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Abstract. So-called Modern SAT solvers are built upon a few – but essential –
ingredients: branching, learning, restarting and clause database cleaning. Most
of them have been greatly improved since their first introduction, more than ten
years ago. In many cases, the initial reasons that lead to their introduction do not
explain anymore their current usage (for instance: very rapid restarts, aggressive
clause database cleaning). Modern SAT solvers themselves share fewer and fewer
properties with their ancestor, the classical backtrack search DPLL procedure.
In this paper, we explore restart strategies in the light of a new vision of SAT
solvers. Following the successful results of GLUCOSE, we consider CDCL solvers
as resolution-based producers of clauses. We show that this vision is particularly
salient for targeting UNSAT formulae. In a second part, we show how detecting
sudden increases in the number of variable assignments can help the solver to
target SAT instances too. By varying our restart strategy, we show an important
improvement over GLUCOSE 2.0, the winner of the 2011 SAT Competition, cate-
gory Application SAT+UNSAT formulae. Finally we would like to point out that
this new version of GLUCOSE was the winner of the SAT Challenge 2012.

1 Introduction

Despite the important progress constantly observed in the practical solving of SAT/-
UNSAT problems, most of these components are commonly viewed as improvements
over the DPLL-62 [4] procedure. In many works, including recent ones, the vision of
CDCL (Conflict Driven Clause Learning, also called ”Modern SAT”) solvers [10, 13] as
backtrack-search engines prevails. In this paper, we discuss this point of view and focus
our work on an essential ingredient of Modern SAT solvers: restarts. Restart strategies
used in CDCL solvers are also often understood as heirs of the DPLL framework. If
the search seems to not be close to finding a model, then a restart often means ”restarts
tree-search elsewhere”.

Restarting was first proposed to prevent the search tree from making mistakes in its
top decisions. This idea was formally observed by the Heavy Tailed distribution of CPU
time of DPLL-like solvers. However, initially, restarting was thought of as a witness of
branching heuristics failure. Thus, restarts were not (i.e. after thousands of explored
branches) and, to ensure completeness of approaches, restarts were triggered according
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to a geometric series. More recently, restarts strategies were following Luby series, a
linear increasing series.

In this work, we take an alternate vision of CDCL solvers. Our goal is to view them
as resolution-based ”clauses producers” instead of ”search-space explorers”. This vi-
sion is illustrated by our solver GLUCOSE. It was already embedded in GLUCOSE 1.0
[1], thanks to a good measure over learnt clauses, called LBD (Literal Block Distance),
however, some details of the restart strategy used in the version of GLUCOSE that par-
ticipated to the SAT Competition 2009 3 [8] were never published. Additionally, in this
paper, we describe a new restart strategy, used in GLUCOSE 2.1, that shows significant
improvements over GLUCOSE 2.0.4 This new restart strategy is twice as aggressive and
still does not have any guarantee that long runs will be allowed. This property, asso-
ciated with the fact that GLUCOSE 2.0 deleted 93% of the learnt clauses during the
SAT competition 2011,5 shows that GLUCOSE can hardly be considered as a system-
atic search solver, and is increasingly distant from the DPLL vision of Modern SAT
Solvers. We also show in this paper that such an aggressive strategy is especially good
for UNSAT problems. In order to allow an improvement also on SAT instances, we
propose to add a ”blocking” parameter to our strategy, which is able to postpone one
or many aggressive restarts when the solver seems to suddenly reach a global assign-
ment. Intuitively, our work tries to reconcile the two opposing forces working in CDCL
solvers. One (the UNSAT force) is trying to decrease the number of decision levels, by
learning good clauses. The other (the SAT force) is trying to increase the number of
decision levels, by assigning more and more variables.

2 Background

For lack of space, we assume the reader is familiar with Satisfiability notions (variables
xi, literal xi or ¬xi, clause, unit clause and so on). We just recall the global schema of
CDCL solvers [5, 10]: a typical branch can be seen as a sequence of decisions (usually
with the VSIDS heuristic) followed by propagations, repeated until a conflict is reached.
Each decision literal is assigned at its own level shared with all propagated literals
assigned at the same level (a block is defined as all literals which are assigned at the
same decision level). Each time a conflict is reached, a nogood is extracted. The learnt
clause is then added to the clause database and a backjumping level is computed from it.
Solvers also incorporate other components such as restarts (see section 3) and a learnt
clause database reduction policy.

This last component is clearly crucial to solver performance. Indeed, keeping too
many learnt clauses will slow down the unit propagation process, while deleting too
many of them will break the overall learning benefit. Then, more or less frequently,
half of the learnt clauses are removed from the database. Consequently, identifying
good learnt clauses - relevant to the proof derivation - is clearly an important challenge.

3 GLUCOSE 1.0 won the first prize in the category Application UNSAT, SAT Competition 2009
4 GLUCOSE 2.0 won the first prize in the category Application SAT+UNSAT, 2011
5 If we study all GLUCOSE’s traces of the 2011 competition, phase 2, in the categories Applica-

tions and Crafted, GLUCOSE 2.0 learnt 973,468,489 clauses (sum over all traces) but removed
909,123,525 of them during computation, i.e. more than 93end.



The first proposed quality measure follows the success of the activity based VSIDS
heuristic. More precisely, a learnt clause is considered relevant to the proof, if it is
involved more often in recent conflicts, i.e. usually used to derive asserting clauses.
Clearly, this deletion strategy is based on the assumption that a useful clause in the
past could be useful in the future. More recently, a more accurate measure called LBD
(Literal Block Distance) was proposed to estimate the quality of a learnt clause. This
measure is defined as follow [1]:
Definition 1 (Literal Block Distance (LBD)). Given a clause c, and a partition of its
literals into n subsets according to the current assignment, s.t. literals are partitioned
w.r.t their level. The LBD of C is exactly n.
Extensive experiments demonstrated that clauses with small LBD values are used more
often (in propagation and conflict) than those with higher LBD values [1]. Intuitively,
the LBD score measures the number of decisions that a given clause links together. It
was shown that ”glue clauses”, i.e., clauses of LBD 2, are very important. Then, this
new measure can be combined with a very agressive cleaning strategy: bad clauses are
often deleted.

Another important component for our purposes is the literal polarity to be chosen
when the next decision variable is selected, by the VSIDS heuristic. Usually, a default
polarity (e.g. false) is defined and used each time a decision literal is assigned. Based
on the observation that restarting and backjumping might lead to repetitive solving the
same subformulas, Pipatsrisawat and Darwiche [12] proposed to dynamically save for
each variable the last seen polarity. This literal polarity based heuristic, called phase
saving, prevents the solver from solving the same satisfiable subformulas several times.
As we will see in the next section, this component is crucial for rapid restarts.

3 State of the (Rest)Art

In CDCL solvers, restarting is not restarting. The solver maintains all its heuristic values
between them and restarts must be seen as dynamic rearrangements of variable depen-
dencies. Additionally, hidden restarts are triggered in all solvers: when a unit clause is
learnt (which is often the case in many problems, during the first conflicts), the solver
usually cancels all its decisions without trying to recover them, in order to immediately
consider this new fact. Thus, on problems with a lot of learnt unit clauses, the solver
will restart more often, but silently.

There has been substantial previous work in this area. We only review here the
most significant ones for our own purposes. In 2000 [6], the heavy-tailed distribution
of backtracking (DPLL) procedures was identified. To avoid the high variance of the
runtime and improve the average performance of SAT solvers, it was already proposed
to add restarts to DPLL searches. As we will see, this explanation does not hold anymore
for explaining the performance of recent solvers.

In MINISAT 1.4 [5], a scheduled restart policy was incorporated, following a geo-
metric series (common ratio of 1.5, starting after 100 conflicts). In [7] the Luby series
[9] was demonstrated to be very efficient. This series follows a slow-but-exponentially
increasing law like 1 1 2 1 1 2 4 1 1 2 4 8 1 1 2 1 ... Of course, in practice, this series is
multiplied by a factor (in general between 64 and 256). This series is interesting because



X

K SAT? 50 75 100 200 300 400 500
0.7 N 89 86 86 81 85 75 80
0.8 N 93 93 90 86 85 87 82
0.7 Y 78 81 78 77 81 77 83
0.8 Y 78 77 76 79 76 78 74

Table 1. Number of solved instances with different values of X (size of the queueLBD). Results
are refined by category of benchmarks (SAT, UNSAT) and the margin ratio (0.7 or 0.8). Tests
were (here) conducted on SAT 2011 Application benchmarks only. The CPU CutOff was 900s.

it was proven to be optimal for search algorithms in which individual runs are indepen-
dent, i.e., share no information. We will discuss the problems of this restart strategy
later.

It was proposed in [3] to nest two series, a geometric one and a Luby. The idea was
to ensure that restarts are guaranteed to increase (allowing the search to, theoretically,
be able to terminate) and that fast restarts occur more often than in the geometric series.
In [2], it was proposed to postpone any scheduled restart by observing the ”agility”
of the solver. This measure is based on the polarity of the phase saving mechanism
(see section 2). If most of the variables are forced against their saved polarity, then the
restart is postponed: the solver might find a refutation soon. If polarities are stalling, the
scheduled restart is triggered.

We should probably note here that the phase saving scheme [12] is crucial in the
case of fast restarts. Indeed, it allows the solver to recover most of the decisions (but
not necessarily in the same order) before and after the restart.

3.1 A note on the Luby restart strategy

Luby restarts were shown to be very efficient even for very small values (a factor of 6
was shown to be optimal [7] in terms of number of conflicts). However, in most of the
CDCL solvers using Luby restarts, the CPU time needs to be taken into account and a
typical Luby factor is often between 32 and 256.

To have an intuition of the Luby behavior, if we take a constant ratio of 50 (to
compare it with GLUCOSE 2.1 that will be presented in the following section), after
1,228,800 conflicts, the CDCL solver will have triggered 4095 restarts, with an average
of 300 conflicts per restart and one long run of 102,400 conflicts (and two runs of 51,200
conflicts, four runs of 25,600 conflicts, . . . ). Thus, if a few top-level decisions of the
longest run were wrong, 8% of the total effort will be lost. Considering the fact that this
longest run is triggered without any special ”stronger” heuristic (one can branch on very
recent variables only for instance, leading this long run to a very local sub-problem),
this is a risky strategy. Clearly, there is room for improvements.

4 Faster and More Reactive Restarts for UNSAT

In the first version of GLUCOSE we experimented with a restart policy based on the de-
crease of decision levels. The aim was to encourage the solver to minimize the number



of decisions before reaching conflicts. We showed that, on many instances, the faster
the decreasing is, the better the performance (this observation was the initial motivation
for GLUCOSE). However, even if this strategy was used in [1], additional experiments
quickly pointed out the importance of good clauses (having a low LBD score). The
overall architecture of GLUCOSE was quickly fully-oriented to focus on LBD scores
only, so it was natural to rely on the production of good clauses instead of the produc-
tion of fewer decision levels as possible (this last measure was shown to be stalling
after a while, or even constantly increasing on some particular benchmarks. Taking
LBD scores only into account was shown to be more informative). Thus, we decided to
change the restart policy of the version of GLUCOSE that participated to the SAT 2009
competition.

The idea behind our restart strategy is the following: since we want good clauses
(w.r.t. LBD), we perform a restart if the last produced ones have high LBDs. To do that,
if K times (0 < K < 1) the average of LBD scores of the last X conflicts was above
the average of all LBD scores of produced clauses so far, then a restart is triggered. To
be able to compute the moving average of the X last LBDs we use a bounded queue
(called queueLBD) of size X . Of course, whenever the bounded queue is not full, we
can not compute the moving average, then at least X conflicts are performed before
making a restart. We produce here a sketch of the algorithm that triggers restarts.

// In case of conflict
compute learnt clause c;
sumLBD+= c.lbd(); conflicts++;// Used for global average
queueLBD.push(c.lbd());
if(queueLBD.isFull() && queueLBD.avg()*K>sumLBD/conflicts) {

queueLBD.clear();
restart();

}

The magic constant K, called the margin ratio, provides different behaviors. The
larger K is, the fewer restarts are performed. In the first version of GLUCOSE, we use
X = 100 and K = 0.7. These values were experimentally fixed to give good results on
both SAT and UNSAT problems. This strategy was not changed in GLUCOSE 2.0.

We show now how we can improve the value of X by observing the performance of
GLUCOSE on SAT/UNSAT problems. We must also say, as a preliminary, that improv-
ing SAT solvers is often a cruel world. To give an idea, improving a solver by solving
at least ten more instances (on a fixed set of benchmarks of a competition) is generally
showing a critical new feature. In general, the winner of a competition is decided based
on a couple of additional solved benchmarks.

Table 1 provides for two margin ratios (0.7 and 0.8, chosen for their good perfor-
mance), the number of solved instances from the SAT 2011 competition when changing
the size of the bounded queue (X). We also need to clarify that 0.7 was used in GLU-
COSE 1.0 and 2.0, while 0.8 was, also, already proposed in GLUEMINISAT [11]. As we
can see, the size X of the bounded queue has a major impact on UNSAT formulae, and
not much effect on SAT instances: for both values of K, the number of solved UNSAT
instances are clearly decreasing, while the SAT ones are stalling. Thus, bounded queue
size of 50 seems to be a very good value for UNSAT problems. In order to understand
the impact of changing the bounded queue size, let us notice here that fixing X has
not only the effect of restarting more or less frequently (this is a strict minimal interval



length for restarts: no restart is triggered while the bounded queue is still not full), it has
also an important side effect: the longer the queue is, the slower it can react to impor-
tant but short variations. Large average windows can “absorb” short but high variances.
Thus, a small value for X will have a more reactive behavior, leading to even more
restarts.

As a short conclusion for this section, we see that, by assigning more reactive values
to the restart strategy of GLUCOSE 1.0, GLUEMINISAT used very good parameters for
UNSAT problems. This observation certainly explain why GLUEMINISAT won a first
prize in the UNSAT category in 2011. Next, we show how we can keep these parameters
while also allowing more SAT instances to be solved.

5 Blocking a fast restart when approaching a full assignment

As mentioned above, learning good clauses should allow the solver to make fewer and
fewer decisions before reaching conflicts. However, we have clearly shown that reduc-
ing the bounded queue size has no outstanding effect on SAT instances. In this section,
we show how we can add a new blocking strategy for postponing restarts, when the
solver is approaching a global solution in order to improve our solver on SAT instances.

The problem we have is the following. GLUCOSE is firing aggressive clause deletion
(see section 2) and fast restarts. On some instances, restarts are really triggered every
50 conflicts. So, if the solver is trying to reach a global assignment, it has now only a
few tries before reaching it. Additionally, the aggressive clause deletion strategy may
have deleted a few clauses that are needed to reach the global assignment directly. The
idea we present here is to simply delay for one turn the next restart (the bounded queue
is emptied and the restart possibility will be tested only when it is full again) each time
the number of total assignments are significantly above the average measured during a
window of last conflicts (we chose a rather large window of 5,000 conflicts).

The total number of assignments (called trail size) is the current number of decisions
plus the number of propagated literals. Let us now formalize the notion of “significantly
above” expressed above. We need for this an additional margin value, that we will call
R. Our idea is to empty the bounded queue of LBD (see section 4), thus postponing a
possible restart, each time a conflict is reached with a trail size greater than R times the
moving average of the last 5,000 conflicts trail sizes (computed using an other bounded
queue called trailQueue). Of course, this can occur many times during an interval
of restarts, and thus the bounded queue can be emptied before it is again full, or can be
emptied many times during the interval. We produce here the sketch of the algorithm
that blocks restarts.
// In case of conflict
queueTrail.push(trail.size());
if(queueLBD.isFull() && queueTrail.isFull() &&trail.size()>R*queueTrail.avg()) {

queueLBD.clear();
}

Table 2 helps us determine the right value for R, according to the different choices
of (X ,K): ((100, 0.7) and (50, 0.8)) Here are a few conclusions that can be drawn from
this Table:

– For UNSAT problems, we observe that the R value does not play any significant
role. If we take a look on the average number of conflicts between each restart



R

(X,K) SAT? No 1.2 1.3 1.4 1.5
(100, 0.7) N 86 (4500) 85 (4700) 86 (3600) 83 (4600) 86 (4400)
(50, 0.8) N 93 (318) 89 (364) 93 (375) 94 (369) 93 (400)
(100, 0.7) Y 78 (8200) 77 (7700) 79 (7500) 76 (8600) 80 (12000)
(50, 0.8) Y 78 (433) 80 (710) 78 (750) 87 (520) 83 (561)

Table 2. Number of solved instances with different values of R with, in parenthesis, the average
number of conflicts between two restarts (“No” means no blocking). Tests were conducted on
SAT 2011 Application benchmarks only. The CPU CutOff was 900s.

(average over all solved instances) we can notice that the size of the bounded queue
increases a lot the number of conflicts between each restart. Here, however, the
blocking strategy has no real impact.

– For SAT problems, we observe a few interesting things. First, varying the value of
the R parameter does not impact performance when (X,K) = (100, 0.7) (we also
observed this on larger values than 100). Second, for the couple (50, 0.8), block-
ing restarts seems very promising. Restarts are very aggressive and the blocking
strategy it may be crucial to postpone a restart. Setting R to 1.4 is clearly the best
choice. The results improve the number of solved SAT instances by solving 9 addi-
tional SAT benchmarks. We can also notice that, (1) the different values of R have
an impact on the average number of conflicts between two restarts and, (2) in case
of SAT instances the average number of conflicts is always greater than for UNSAT
ones.
As a conclusion here, we experimentally show that playing on the R value has a

great impact on SAT instances, and almost no impact on UNSAT ones. This can be
observed by looking at the average number of conflicts between restarts. R = 1.4
allows larger windows for SAT while maintaining small ones for UNSAT.

6 Experimental evaluation of GLUCOSE 2.1

Progresses made in the practical solving of SAT instances are constantly observed and
important, even in the last few years. We illustrate here the progress made since our first
release of GLUCOSE 1.0, 3 years ago. To understand the progress made, we must also
notice that GLUCOSE 2.0 is based on MINISAT 2.2 (instead of MINISAT 2).

Our methodology was the following. We worked on GLUCOSE 2.1 on 2011 bench-
marks only, then tested our final ideas on all benchmarks (2009+2011 benchmarks).
Our aim was somehow to counterbalance the possibility that GLUCOSE 2.1 would have
been specialized for 2011 benchmarks (the 2.0 version had no access to them). As we
will see, we also measured an important improvement on benchmarks from the 2009
competition.

First of all, the scatter plot in Figure 1(a) provides a graphical comparison of ver-
sion 2.0 and 2.1 on all instances. Since most dots are below the diagonal, it is clear
that version 2.1 is faster than 2.0. We also see on the traditional cactus plot shown in
Figure 1(b) the breakthrough improvements made in the last 3 years. The novelty of
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1.0 2.0 2.1
Benchmarks nb SAT UNSAT Total SAT UNSAT Total SAT UNSAT Total

SAT2009 292 50 89 139 68 118 186 77 123 200
SAT2011 300 74 79 153 78 86 164 87 94 181

SAT2009+2011 536 113 157 270 136 192 328 148 204 352
(c) Number of solved benchmarks in different competitions

Fig. 1. a. Scatter plot: Each dot represents an instances, x-axis (resp. y-axis) the time needed by
version 2.0 (resp. 2.1) to solve it. Dots below the diagonal represent instances solved faster with
version 2.1 (log scale).
b. Cactus plot of 3 versions: The x-axis gives the number of solved instances and the y-axis the
time needed to solve them.
c. For each competition, the number of benchmarks (nb) is provided with, for each versions of
GLUCOSE, the number of solved instances.

GLUCOSE 2.1 vs GLUCOSE 2.0 is less important, but still significant and relies only on
the improvements presented in this paper.

Finally, Figure 1(c) details the obtained results on the 2 sets of benchmarks, with the
same CPU CutOff of 900 (of course benchmarks common to both sets are reported only
one time in last line). Clearly, the new version of GLUCOSE, based on more aggressive
restarts presented in this paper, obtained the best results.

7 Conclusion

In this paper we show how, by refining the dynamic strategy of GLUCOSE for UNSAT
problems, and adding a new and simple blocking strategy to it, that is specialized for
SAT problems, we are able to solve significantly more problems, more quickly. The
overall idea of this paper is also to push a new vision of CDCL SAT solvers. We think
they may now be closer to resolution-based producers of good clauses rather than back-
track search engines.
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