
Shortest Vector from Lattice Sieving:
A Few Dimensions for Free

Léo Ducas(B)

Cryptology Group, CWI, Amsterdam, The Netherlands
ducas@cwi.nl

Abstract. Asymptotically, the best known algorithms for solving the
Shortest Vector Problem (SVP) in a lattice of dimension n are sieve
algorithms, which have heuristic complexity estimates ranging from
(4/3)n+o(n) down to (3/2)n/2+o(n) when Locality Sensitive Hashing tech-
niques are used. Sieve algorithms are however outperformed by pruned
enumeration algorithms in practice by several orders of magnitude,
despite the larger super-exponential asymptotical complexity 2Θ(n log n)

of the latter.
In this work, we show a concrete improvement of sieve-type algo-

rithms. Precisely, we show that a few calls to the sieve algorithm in
lattices of dimension less than n − d solves SVP in dimension n, where
d = Θ(n/ log n).

Although our improvement is only sub-exponential, its practical effect
in relevant dimensions is quite significant. We implemented it over a sim-
ple sieve algorithm with (4/3)n+o(n) complexity, and it outperforms the
best sieve algorithms from the literature by a factor of 10 in dimensions
70–80. It performs less than an order of magnitude slower than pruned
enumeration in the same range.

By design, this improvement can also be applied to most other vari-
ants of sieve algorithms, including LSH sieve algorithms and tuple-sieve
algorithms. In this light, we may expect sieve-techniques to outperform
pruned enumeration in practice in the near future.

Keywords: Cryptanalysis · Lattice · Sieving · Nearest-Plane

1 Introduction

The concrete hardness of the Shortest Vector Problem (SVP) is at the core of
the cost estimates of attacks against lattice-based cryptosystems. While those
schemes may use various underlying problems (NTRU [HPS98], SIS [Ajt99],
LWE [Reg05]) their cryptanalysis boils down to solving large instances of the
Shortest Vector Problem inside BKZ-type algorithms. There are two classes of
algorithms for SVP: enumeration algorithms and sieve algorithms.

Supported by a Veni Innovational Research Grant from NWO under project number
639.021.645.

c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10820, pp. 125–145, 2018.
https://doi.org/10.1007/978-3-319-78381-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78381-9_5&domain=pdf

126 L. Ducas

The first class of algorithms (enumeration) was initiated by Pohst [Poh81].
Kannan [Kan83,HS07,MW15] proved that with appropriate pre-processing, the
shortest vector could be found in time 2Θ(n log n). This algorithm only requires
a polynomial amount of memory. These algorithms can be made much faster
in practice using some heuristic techniques, in particular the pruning tech-
nique [SE94,SH95,GNR10,Che13].

The second class of algorithms (sieving) started with Ajtai et al. [AKS01], and
requires single exponential time and memory. Variants were heuristically ana-
lyzed [NV08,MV10], giving a (4/3)n+o(n) time complexity and a (4/3)n/2+o(n)

memory complexity. A long line of work, including [BGJ13,Laa15a,Laa15b,
BDGL16] decrease this time complexity down to (3/2)n/2+o(n) at the cost of
more memory. Other variants (tuple-sieving) are designed to lower the memory
complexity [BLS16,HK17].

The situation is rather paradoxical: asymptotically, sieving algorithms should
outperform enumeration algorithms, yet in practice, sieving remains several
orders of magnitude slower. This situation makes security estimates delicate,
requiring both algorithms to be considered. In that respect, one would much
prefer enumeration to become irrelevant, as the heuristics used in this algorithm
makes prediction of its practical cost tedious and maybe inaccurate.

To this end, an important goal is to improve not only the asymptotic complex-
ity of sieving, but also its practical complexity. Indeed, much can been gained
from asymptotically negligible tricks, fine-tuning of the parameters, and opti-
mized implementation effort [FBB+15,BNvdP14,MLB17].

This work. We propose a new practical improvement for sieve algorithms. In
theory, we can heuristically show that it contributes a sub-exponential gain in
the running time and the memory consumption. In practice, our implementa-
tion outperforms all sieving implementations of the literature by a factor of 10
in dimensions 70–80, despite the fact that we did not implement some known
improvements [BDGL16,MLB17]. Our improved sieving algorithm performs rea-
sonably close to pruned enumeration; more precisely, within less than an order
of magnitude of the optimized pruned enumeration implementation in fplll’s
library [Ste10,FPL16b,FPL16a].1

In brief, the main idea behind our improvement is exploiting the fact that
sieving produces many short vectors, rather than only one. We use this fact to our
advantage by solving SVP in lattices of dimension n while running a sieve algo-
rithm in projected sub-lattices of dimension smaller than n−d. Using an appro-
priate pre-processing, we show that one may choose d as large as Θ(n/ log n).
Heuristic arguments lead to a concrete prediction of d ≈ n ln(4/3)

ln(n/2πe) . This predic-
tion is corroborated by our experiments.

At last, we argue that, when combined with the LSH techniques [BDGL16,
MLB17], our new technique should lead to a sieve algorithm that outperforms

1 Please note that this library was not so fast for SVP and BKZ a few years ago
and it recently caught up with the state of the art with the addition of a pruner

module [FPL16b], and of an external Strategizer [FPL16a].

Shortest Vector from Lattice Sieving 127

enumeration in practice, for dimensions maybe as low as n = 90. We also suggest
four approaches to further improve sieving, including amortization inside BKZ.

Outline. We shall start with preliminaries in Sect. 2, including a generic pre-
sentation of sieve algorithms in Sect. 2.3. Our main contribution is presented
in Sect. 3. In Sect. 4, we present details of our implementation, including other
algorithmic tricks. In Sect. 5 we report on the experimental behavior of our
algorithm, and compare its performances to the literature. We conclude with
a discussion in Sect. 6, on combining our improvement with the LSH tech-
niques [Laa15a,BDGL16,MLB17], and suggest further improvements.

2 Preliminaries

2.1 Notations and Basic Definitions

All vectors are denoted by bold lower case letters and are to be read as column-
vectors. Matrices are denoted by bold capital letters. We write a matrix B as
B = (b0, · · · ,bn−1) where bi is the i-th column vector of B. If B ∈ R

m×n

has full-column rank n, the lattice L generated by the basis B is denoted by
L(B) = {Bx | x ∈ Z

n}. We denote by (b∗
0, · · · ,b∗

n−1) the Gram-Schmidt orthog-
onalization of the matrix (b0, · · · ,bn−1). For i ∈ {0, · · · , n − 1}, we denote the
orthogonal projection to the span of (b0, · · · ,bi−1) by πi. For 0 ≤ i < j ≤ n,
we denote by B[i,j] the local projected block (πi(bi), · · · , πi(bj−1)), and when
the basis is clear from context, by L[i,j] the lattice generated by B[i,j]. We use
Bi and Li as shorthands for B[i,n] and L[i,n].

The Euclidean norm of a vector v is denoted by ‖v‖. The volume of a lattice
L(B) is Vol(L(B)) =

∏
i ‖b∗

i ‖, that is an invariant of the lattice. The first
minimum of a lattice L is the length of a shortest non-zero vector, denoted by
λ1(L). We use the abbreviations Vol(B) = Vol(L(B)) and λ1(B) = λ1(L(B)).

2.2 Lattice Reduction

The Gaussian Heuristic predicts that the number |L ∩ B| lattice of points inside
a measurable body B ⊂ R

n is approximately equal to Vol(B)/Vol(L). Applied to
Euclidean n-balls, it leads to the following prediction of the length of a shortest
non-zero vector in a lattice.

Definition 1 (Gaussian Heuristic). We denote by gh(L) the expected first
minimum of a lattice L according to the Gaussian Heuristic. For a full rank
lattice L ⊂ R

n, it is given by:

gh(L) =
√

n/2πe · Vol(L)1/n.

We also denote gh(n) for gh(L) of any n-dimensional lattice L of volume 1:
gh(n) =

√
n/2πe.

128 L. Ducas

Definition 2 (Hermite-Korkine-Zolotarev and Block-Korkine-Zolotarev

reductions [Ngu09]). The basis B = (b0, . . . ,bn−1) of a lattice L is said to
be HKZ reduced if ‖b∗

i ‖ = λ1(L(Bi)) for all i < n. It is said BKZ reduced
with block-size b (for short BKZ-b reduced) ‖b∗

i ‖ = λ1(L(B[i:max(i+b,n)])) for all
i < n.2

Under the Gaussian Heuristic, we can predict the shape �0 . . . �n−1 of an HKZ
reduced basis, i.e., the sequence of expected norms for the vectors b∗

i . The
sequence is inductively defined as follows:

Definition 3. The HKZ-shape of dimension n is defined by the following
sequence:

�0 = gh(n) and �i = gh(n − i) · (∏

j<i

�j

)− 1
n−i .

Note that the Gaussian Heuristic is known to be violated in small dimen-
sions [CN11], fortunately we only rely on the above prediction for i � n.

Definition 4 (Geometric Series Assumption). Let B be a BKZ-b reduced
basis of a lattice of volume 1. The Geometric Series Assumption states that:

‖b∗
i ‖ = α

n−1
2 −i

b

where αb = gh(b)2/b.

This model is reasonably accurate in practice for b > 50 and b � n. For
further discussion on this model and its accuracy, the reader may refer to
[CN11,Che13,YD16].

2.3 Sieve Algorithms

There are several variants of sieving algorithms, even among the restricted class
of Sieving algorithms having asymptotic complexity (4/3)n+o(n) [NV08,MV10].
Its generic form is given below.

Algorithm 1. Sieve(L)
Require: The basis B of a lattice L of dimension n
Ensure: A list L of vectors

L ← a set of N random vectors (of length at most 2n · Vol(L)1/n) from L where
N = (4/3)n/2+o(n).
while ∃(v,w) ∈ L2 such that ‖v − w‖ < ‖v‖ do

v ← v − w
end while
return L

2 The notion of BKZ-reduction is typically slightly relaxed for algorithmic purposes,
see [HPS11].

Shortest Vector from Lattice Sieving 129

The initialization of the list L can be performed by first computing an LLL-
reduced basis of the lattice [LLL82], and taking small random linear combina-
tions of that basis.

Using heuristic arguments, one can show [NV08] that this algorithm will ter-
minate in time N2 · poly(n), and that the output list contains a shortest vector of
the lattice. The used heuristic reasoning might fail in some special lattices, such as
Z

n. However, nearly all lattices occurring in a cryptographic context are random-
looking lattices, for which these heuristics have been confirmed extensively.

Many tricks can be implemented to improve the hidden polynomial factors.
The most obvious one consists of working modulo negation of vectors (halving
the list size), and to exploit the identity ‖v±w‖2 = ‖v‖2 +‖w‖2 ±2〈v,w〉: two
reductions can be tested for the price of one inner product.

More substantial algorithmic improvements have been proposed in [MV10]:
sorting the list by Euclidean length to make early reduction more likely, hav-
ing the list size be adaptive, and having a queue of updated vectors to avoid
considering the same pair several times. Another natural idea used in [MLB17]
consists of strengthening the LLL-reduction to a BKZ-reduction with medium
block-size, so as to decrease the length of the initial random vectors.

One particularly cute low-level trick proposed by Fitzpatrick et al. [FBB+15]
consists of quickly rejecting pairs of vectors depending on the Hamming weight
of the XOR of their bit signs. We shall re-use (a variant of) this trick in our
implementation. This technique is in fact well known in the Nearest-Neighbor-
Search (NNS) literature [Cha02], and sometimes referred to as SimHash.

The N2 factor may also be improved to a sub-quadratic factor N c, 1 <
c < 2 using advanced NNS data-structures [Laa15a,Laa15b,BDGL16]. While
improving the exponential term, those techniques introduce extra hidden sub-
exponential factors, and typically require more memory.3 In practice these
improvements remain substantial [MLB17]. Yet, as the new improvements pre-
sented in this paper are orthogonal, we leave it to the interested reader to consult
this literature.

3 The SubSieve Algorithm and its Analysis

3.1 Approach

Our improvements rely on the remark that the output of the sieve contains much
more information than a shortest vector of L. Indeed, the analysis of [NV08,
MV10] suggests that the outputted list contains the N shortest vector of the
lattice, namely, all the vectors of the lattice of length less than

√
4/3 · gh(L).

We proceed to exploit this extra information by solving SVP in a lattice of
larger dimension. Let us choose an index d, and run the sieve in the projected
sub-lattice Ld, of dimension n − d. We obtain the list:

L := Sieve(Ld) = {x ∈ Ld \ {0}| ‖x‖ ≤
√

4/3 · gh(Ld)}. (1)
3 Becker et al. [BGJ15] proposed a way to not require extra memory, yet it may hide

an extra polynomial factor on time.

cs13

cs13

130 L. Ducas

Our hope is that the desired shortest non-zero vector s (of expected length
gh(L)) of the full lattice L projects to a vector contained in L, i.e. πd(s) ∈ L or
equivalently by Eq. (1), that ‖πd(s)‖ ≤ √

4/3 gh(Ld). Because ‖πd(s)‖ ≤ ‖s‖ =
gh(L), it is sufficient that:

gh(L) ≤
√

4/3 · gh(Ld). (2)

In fact, we may relax this condition, as we rather expect the projection to be
shorter: ‖πd(s)‖ ≈ √

(n − d)/n‖s‖ assuming the direction of s is uniform and inde-
pendent of the basis B. More precisely, it will happen with constant probability
that ‖πd(s)‖ ≤ √

(n − d)/n‖s‖. Instead we may therefore optimistically require:
√

n − d

n
· gh(L) ≤

√
4/3 · gh(Ld). (3)

We are now searching for a vector s ∈ L such that ‖s‖ ≈ gh(L), and such
that sd := πd(s) ∈ L. By exhaustive search over the list L, let us assume we
know sd; we now need to recover the full vector s. We write s = Bx and split
x = (x′,x′′) where x′ ∈ Z

d and x′′ ∈ Z
n−d. Note that sd = πd(Bx) = Bdx′′, so

we may recover x′′ from sd.
We are left with the problem of recovering x′ ∈ Z

d such that B′x′ + B′′x′′

is small where [B′|B′′] = B, i.e., finding the short vector s in the lattice coset
L(B′) − B′′x.

For appropriate parameters, this is an easy BDD instance over the d-
dimensional lattice spanned by B′. More precisely, a sufficient condition to solve
this problem using Babai’s Nearest-Plane algorithm [Bab86] is that |〈b∗

i , s〉| ≤
1
2‖b∗

i ‖2 for all i < d. A sufficient condition is that:

gh(L) ≤ 1
2

min
i<d

‖b∗
i ‖. (4)

This conditions is far from tight, and in practice should not be a serious issue.
Indeed, even for a strongly reduced basis, the d first Gram-Schmidt lengths won’t
be much smaller than gh(L), say by more than a factor 2. On the other hand assum-
ing s has a random direction we expect |〈b∗

i , s〉| ≤ ω(ln n)/
√

n · ‖b∗
i ‖ · ‖s‖ except

with super-polynomially small probability. We will check this condition in the com-
plexity analysis below (Sect. 3.2), and will simply ignore it in the rest of this paper.

Algorithm 2. SubSieve(L, d)
Require: The basis B = [B′|B′′] of a lattice L of dimension n
Ensure: A short vector of L

L ← Sieve(Ld)
for each wi ∈ L do

Compute x′′
i such that Bd · x′′

i = wi

ti = B′′ · x′′

si ← Babai(B′, ti) + ti

end for
return the shortest si

Shortest Vector from Lattice Sieving 131

Heuristic Claim 1. For a random lattice, and under conditions (2) and (4),
SubSieve(L, d) outputs the shortest vector of L, and its complexity is dominated
by the cost N2 · poly(n) of Sieve(Ld), with an additive overhead of n2 · N real
arithmetic operations.

We note that the success of our approach depends crucially on the length
of the Gram-Schmidt norms ‖b∗

i ‖ (indeed for a fixed d, gh(Ld) depends only of∏
i≥d ‖b∗

i ‖). In the following Sect. 3.2, we will argue that our approach can be
successfully instantiated with d = Θ(n/ ln n) using an appropriate pre-processing
of negligible cost.

3.2 Complexity Analysis

Assume that our lattice L has volume 1 (without loss of generality by scal-
ing), and that its given basis B is BKZ-b reduced. Using the Geometric Series
Assumption (Definition 4) we calculate the volume of Ld:

Vol(Ld) =
n−1∏

i=d

‖b∗
i ‖ =

n−1∏

i=d

α
n−1
2 −i

b = α
d(d−n)/2
b .

Recalling that for a k-dimensional lattice we have gh(L) ≈ Vol(L)1/k
√

k/(2πe),
condition (2) is rewritten to

√
n

2πe
≤

√
4
3

·
√

n − d

2πe
· α

−d/2
b .

Taking logarithms, we rewrite the above condition as

d ln αb ≤ ln(4/3) + ln(1 − d/n).

We (arbitrarily) choose b = n/2 which ensures that the cost of the BKZ-
preprocessing is negligible compared to the cost of sieving in dimension n−o(n).
Unrolling the definitions, we notice that lnαb = Θ((ln b)/b) = Θ((ln n)/n). We
conclude that condition (2) is satisfied for some d = Θ(n/ ln n).

The second condition (4) for the correctness of Babai lifting is easily satisfied:
for i < d = o(n) we have ‖b∗

i ‖ = gh(b)(n−o(n))/b = gh(b)2−o(1) = n1−o(1), while
gh(n) = Θ(n1/2). This concludes our argument of the following claim.

Heuristic Claim 2. Having preprocessed the basis B of L with the BKZ algo-
rithm with blocksize b = n/2—for a cost of at most poly(n) time the cost of Sieve
in dimension n/2—our SubSieve(L, d) algorithm will find the shortest vector of
L for some d = Θ(n/ ln n).

In particular, SubSieve(L, d) is faster than Sieve(L) by a sub-exponential fac-
tor 2Θ(n/ lnn).

The fact that BKZ-b requires only poly(n) calls to an SVP oracle in dimension
b is justified in [HPS11].

132 L. Ducas

3.3 (Progressive) Iteration as Pre-processing

We now propose an alternative approach to provide pre-processing in our con-
text. It consists of applying an extension of the SubSieve algorithm iteratively
from a weakly reduced basis to a strongly reduced one. To proceed, we first need
to slightly extend our algorithm, to not only provide one short vector, but a
partial basis V = [v0| . . . |vm] of rank m, such that their Gram-Schmidt lengths
are as short as possible. In other words, the algorithm now attempts to provide
the first vectors of an HKZ-reduced basis. For all practical purpose, m = n/2 is
sufficiently large. This extension comes at a negligible additional cost of O(n3)·N
compared to the sieve of complexity poly(n) · N2.

Algorithm 3. SubSieve+(L, d)
Require: The basis B = [B′|B′′] of a lattice L of dimension n
Ensure: A short vector of L

L ← Sieve(Ld)
for each wi ∈ L do

Compute x′′
i such that Bd · x′′

i = wi

ti = B′′ · x′′

si ← Babai(B′, ti) + ti

end for
for j = 0 . . . n/2 − 1 do

Set vj to be the si vector minimizing ‖π(v0...vj−1)⊥(si)‖ such that s �∈
Span(v0 . . .vj−1)
end for
return (v0 . . .vn/2−1)

Then, the iteration consists of completing V into a basis of L, and to use it
as our new input basis B.4

Additionally, as conditions (2) or even its optimistic variant (3) are not nec-
essary conditions, we may hope that a larger value of d may probabilistically
lead faster to the shortest vector. In fact, hoping to obtain the shortest vector
with d larger than required by the pessimistic condition (2) can be interpreted
in the pruning framework of [GNR10,Che13]; this will be discussed in Sect. 6.2.

For this work, we proceed with a simple strategy, namely we iterate starting
with a large value of d (say n/4) and decrease d by 1 until the shortest vector (or
a vector of the desired length) is found. This way, the failed attempts with too
small d nevertheless contribute to the approximate HKZ-reduction, improving
the basis for the next attempt.

4 This can be done by applying LLL [LLL82] on the matrix [V|B], which eliminates
linear dependencies. As LLL can only decrease partial determinants, the volume of
the first d-vectors after this process can only be smaller than the volume of V: this
does not affect condition (2) and (3).

Shortest Vector from Lattice Sieving 133

The author admit to have no theoretical arguments (or even heuristic) to jus-
tify that this iterating approach should be more efficient than the preprocessing
approach presented in Sect. 3.2. Yet, as we shall see, this method works quite
well in practice, and has the advantage of being much simpler to implement.

Remark. One natural tweak is to also consider the vectors in B′ when construct-
ing the new partial basis V so as to ensure that the iteration never introduces
a regression. Yet, as the optimistic condition is probabilistic, we may get stuck
with an unlucky partial basis, and prefer to change it at each iteration. This is
reminiscent of the rerandomization of the basis in the extreme pruning technique
of Gama et al. [GNR10]. It is therefore not entirely clear if this tweak should be
applied. In practice, we noted that applying this trick made the running time
of the algorithm much more erratic, making it hard to determine if it should be
better on average. For the sake of this initial study, we prefer to stick with the
more stable version of the algorithm.

3.4 Tentative Prediction of d on Quasi-HKZ Reduced Basis

We now attempt to estimate the concrete maximal value d allowing our algo-
rithm to succeed. We nevertheless warn the reader against strong conclusions
on the concrete hardness of SVP from the analysis below. Indeed, it does not
capture some practical phenomena, such as the fact that (1) is not strictly true
in practice,5 or more subtly that the directions of the vectors of B are not inde-
pendent of the direction of the shortest vector s when B is so strongly reduced.
Additionally, we identify in Sect. 6.2 avenues for improvements that could make
this analysis obsolete.

We work under the heuristic assumption that the iterations up to dlast − 1
have almost produced an HKZ-reduced basis: ‖b∗

i ‖ ≈ �i where �i follows the
HKZ-shape of dimension n (Definition 3). From there, we determine whether
the last iteration with d = dlast should produce the shortest vector according to
both the pessimistic and optimistic condition. For i � n we use the first order
approximation ln �i ≈ ln �0 − i · ln �0/�1 and obtain

ln �i ≈ ln �0 − i · ln(n/2π)
2n

.

The pessimistic condition (2) and the optimistic condition (3) respectively
rewrite as:

ln �0 ≤ ln
√

4/3 + ln �d and ln

√
n − d

n
+ ln �0 ≤ ln

√
4/3 + ln �d.

With a bit of rewriting, we arrive at the following maximal value of d respectively
under the following pessimistic and optimistic conditions:

d ≈ n ln 4/3
ln(n/2π)

and d ≈ n ln 4/3
ln(n/2πe)

.

5 Some vectors below the
√

4/3 · gh(Ld) bound may be missing, while other vectors
above this bound may be included.

134 L. Ducas

We can also numerically simulate more precisely the maximal value of d using
the exact values of the �i. All four predictions are depicted on Fig. 1. Our plots
start at dimension 50, the conventional cut-off for the validity of the Gaussian
Heuristic [GN08,Che13]. We note that the approximated predictions are accu-
rate, up to an additive term 2 over the value of d for relevant dimensions n ≤ 250.
We also note that in this range the dimension gain d looks very much linear: for
all practical concerns, our improvement should appear essentially exponential.

Fig. 1. Predictions of the maximal successful choice of d, under various methods and
conditions.

4 Other Optimizations and Implementation Details

In this section, we describe a baseline sieve algorithm and two additional tricks
to improve its practical efficiency. So as to later report the improvement brought
by each trick and by our main contribution, we shall refer to 4 versions of our
algorithm, activating one feature at the time:

– V0: GaussSieve baseline implementation
– V1: GaussSieve with XOR-POPCNT trick
– V2: GaussSieve with XOR-POPCNT trick and progressive sieving
– V3: Iterated SubSieve+ with XOR-POPCNT trick and progressive sieving.

4.1 Baseline Implementation

As a baseline algorithm, we essentially use the Gauss-Sieve algorithm of [MV10],
with the following tweaks.

First, we do not resort to Gaussian Sampling [Kle00] for the construction of
the list L as the sphericity of the initial list does not seem so crucial in practice,
and leads to starting the sieve with vectors longer than necessary. Instead, we
choose vectors by sampling their n/4 last coordinates in base B uniformly in
{0,±1,±2}, and choose the remaining coordinates deterministically using the
Babai Nearest-Plane algorithm [Bab86].

Shortest Vector from Lattice Sieving 135

Secondly, we do not maintain the list perfectly sorted, but only re-sort it
periodically. This makes the implementation somewhat easier6 and does not
affect performances noticeably. Similarly, fresh random vectors are not inserted
in L one by one, but in batches.

Thirdly, we use a hash table to prevent collisions: if v ± w is already in the
list, then we cancel the reduction v ← v ± w. Our hash function is defined as
random linear function h : Zn → Z/264Z tweaked so that h(x) = h(−x); hashing
is fast, and false collisions should be very rare. This function is applied to the
integer coordinates of the vector in base B.

At last, the termination condition is as follows: the algorithm terminates
when no pairs can be reduced, and when the ball of radius

√
4/3 gh(L) is half-

saturated according to the Gaussian Heuristic, i.e. when the list L contains at
least 1

2

√
4/3

n
vectors of length less than

√
4/3 gh(L).

At the implementation level, and contrary to most implementations of the
literature, our implementation works by representing vectors in bases B and
B∗ rather than in the canonical basis of R

n. It makes application of Babai’s
algorithm [Bab86] more idiomatic, and should be a crucial feature to use it as
an SVP solver inside BKZ.

4.2 The XOR-POPCNT Trick (a.k.a. SimHash)

This trick—which can be traced back to [Cha02]—was developed for sieving
in [FBB+15]. It consists of compressing vectors to a short binary representation
that still carries some geometrical information: it allows for a quick approxima-
tion of inner-products. In more detail, they choose to represent a real vector
v ∈ R

n by the binary vector ṽ ∈ Z
n
2 of it signs, and compute the Hamming

weight H = |w̃⊕ ṽ| to determine whether 〈v,w〉 is expected to be small or large
(which in turn informs us about the length ‖v−w‖2 = ‖v‖2 + ‖w‖2 − 2〈v,w〉).
If H is small enough then the exact length is computed, otherwise the pair is
directly rejected.

This trick greatly decreases the practical computational cost and the mem-
ory bandwidth of the algorithm, in particular by exploiting the native POPCNT
instruction available on most modern CPUs.

Following the original idea [Cha02], we use a generalized version of this trick,
allowing the length of the compressed representation to differ from the lattice
dimension. Indeed, we can for example choose c �= n vectors r1, . . . , rc, and
compress v as ṽ ∈ Z

c
2 where ṽi = sign(〈v, ri〉). This allows not only to align c to

machine-word size, but also to tune the cost and the fidelity of this compressed
representation.

In practice we choose c = 128 (2 machine words), and set the ri’s to be sparse
random ternary vectors. We set the acceptance threshold to |w̃⊕ṽ| < 47,7 having

6 It avoids resorting to non-contiguous containers, following the nomenclature of c++

standard library.
7 Of course, we also test whether |w̃ ⊕ ṽ| > 128 − 47 in which case we attempt the

reduction v ← v + w instead of v ← v − w.

136 L. Ducas

optimized this threshold by trial and error. Experimentally, the overall positive
rate of this test is of about 2%, with a false negative rate of less than 30%. The
sieve algorithm automatically compensates for false-negatives by increasing the
list size.

4.3 Progressive Sieving

The trick described in this section was independently invented by Laarhoven and
Mariano in [LM18]; and their work provides a much more thorough investigation
of it. It consists of progressively increasing the dimension, first running the sieve
in sublattices L[0,i] for i increasing from (say) n/2 to n.8

It allows us to obtain an initial small pool of rather short vectors for a
much cheaper cost. In turn, when we increase the dimension and insert new
fresh vectors, the long fresh vectors get shorter noticeably faster thanks to this
initial pool. We use the same terminating condition over L[0,i] to decide when
to increase i than the one described over the full lattice in Sect. 4.1.

4.4 Implementation Details

The core of the our Sieving implementation is written in c++ and the high level
algorithm in python. It relies mostly on the fpylll [FPL16c] python wrapper
for the fplll [FPL16b] library, used for calls to floating-point LLL [Ste10] and
providing the Gram-Schmidt orthogonalization. Our code is not templated by the
dimensions, doing so could improve the performance substantially by allowing
the compiler to unroll and vectorize the inner-product loop.

Our implementation is open source, available at https://github.com/lducas/
SubSieve.

5 Experiments and Performances

In this section, we report on the behavior in practice of our algorithm and the
performances of our implementation. All experiments were ran on a single core
(Intel Core i7-4790 @3.60 GHz).

For these experiments, we use the Darmstadt lattice challenges [SG10]. We
make a first run of fplll’s pruned enumeration (repeating it until 99% success
probability) to determine the exact shortest vector.9 Then, for our experiments,
we stop our iteration of the SubSieve+ algorithm when it returns a vector of the
same length.

8 Note that unlike in our main algorithm SubSieve, the sublattices considered here are
not projected sublattices, but simply the lattice spanned by the first basis vectors.

9 Which is significantly harder than finding the approximation required by [SG10] to
enter in the hall of fame.

https://github.com/lducas/SubSieve
https://github.com/lducas/SubSieve

Shortest Vector from Lattice Sieving 137

5.1 The Dimension Gain d in Practice

In Fig. 2, we compare the experimental value of d to the predictions of Sect. 3.4.
The area of each disc at position (n, d) is proportional the number of experiments
that succeeded with dlast = d. We repeated the experiment 20 times for each
dimension n.

Fig. 2. Comparison between experimental value of d with the prediction of Sect. 3.4.

We note that the average dlast fits reasonably well with the simulated opti-
mistic prediction. Also, in the worst case, it is never lower than the simulated
pessimistic prediction, except for one outlier in dimension 62.

Remark. The apparent erratic behavior of the average for varying n is most
likely due to the fact that our experiments are only randomized over the input
basis, and not over the lattice itself. Indeed the actual length of the shortest
vectors vary a bit around the Gaussian Heuristic, and it seems that the shorter
it actually is, the easier it is to find with our algorithm.

5.2 Performances

We present in Fig. 3 the perfomances of the 4 versions of our implementation
and of fplll’s pruned enumeration with precomputed strategies [FPL16a].

Remark. In fplll, a strategy consists of the choice of a pre-processing blocksize
b and of pruning parameters for the enumeration, as an attempt to reconstruct
the BKZ 2.0 algorithm of Chen and Nguyen [CN11].

The external program Strategizer [FPL16a] first applies various descent
techniques to optimize the pruning parameters, following the analysis of [GNR10,
CN11,Che13], and iterates over all (reasonable) choices of b, to return the best

138 L. Ducas

Fig. 3. Runing time T of all the 4 versions of sieving from 4 and fplll’s pruned
enumeration with precomputed strategies.

strategy for each dimension n. It may be considered near the state of the art,
at least for the dimensions at hand. Unfortunately, we are unaware of timing
reports for exact-SVP in this range of dimensions for other implementations.

It would also be adequate to compare ourselves to the recent discrete-pruning
techniques of Fukase and Kashiwabara [FK15,AN17], but again, we lack match-
ing data. We note that neither the analysis of [AN17] nor the experiments
of [TKH18] provide evidences that this new method is significantly more effi-
cient than the method of [GNR10].

For a fair comparison with SubSieve, we stop repeating the pruned enumera-
tion as soon as it finds the shortest vector, without imposing a minimal success
probability (unlike the first run used to determine the of length shortest vec-
tors). We also inform the enumerator of the exact length of that shortest vector,
making its task somehow easier: without this information, it would enumerate
at a larger radius.

As Algorithms V0, V1 and V2 have a rather deterministic running time
depending only on the dimension, we only provide one sample. For V3 and
enumeration, we provide 20 samples. To compute the fits, we first averaged the
running times for each dimension n, and then computed the least-square linear
fit of their logarithms (computing directly an exponential least-square fit leads
to a fit only capturing the two last dimensions).

The given fits are only indicative and we warn against extrapolations. In
particular, we note that the linear fit of V3 is below the heuristic asymptotic
estimate of (4/3)n+o(n).

Shortest Vector from Lattice Sieving 139

We conclude that our main contribution alone contributes a speed-up of
more than an order of magnitude in the dimensions ≥70 (V3 versus V2), and
that all the tricks taken together provide a speed-up of more than two orders of
magnitudes (V3 versus V0). It performs within less than an order of magnitude
of enumeration (V3 versus Pruned Enum).

5.3 Performance Comparison to the Literature

The literature on lattice sieving algorithms is vast [NV08,MV10,BGJ13,Laa15a,
Laa15b,BDGL16,BLS16,HK17], and many papers do report implementation
timings. We compare ourselves to four of them, namely a baseline implemen-
tation [MV10], and three advanced sieve implementations [FBB+15,MLB17,
HK17], which represent (to the best of our knowledge) the state of the art in
three different directions. This is given in Table 1.

Accounting for the CPU frequencies, we conclude that the implementation of
our algorithm is more than 10 times faster than the current fastest sieve, namely
the implementation of the Becker et al. algorithm [BDGL16] from Mariano
et al. [MLB17].10

Remark. While we can hardly compare to this computation considering the lack
of documentation, we note that T. Kleinjung holds the record for the shortest

Table 1. Comparison with other Sieve implementations.

Features Algorithms

V0 V1 V2 V3 [MV10]a [FBB+15] [MLB17] [HK17]

XOR-POPCNT trick x x x x

Progressive sieving x x

SubSieve x

LSH (more mem.) x

tuple (less mem.) x

Dimension Running times

n = 60 227 s 49s 8 s .9 s 464 s 79 s 13 s 1080 s

n = 70 - - 276 s 10 s 23933 s 4500 s ≈250 s b 33000 s

n = 80 - - - 234 s - - 4320 s 94700 s

CPU frequency (GHz) 3.6 3.6 3.6 3.6 4.0 4.0 2.3 2.3
a As reported by [FBB+15].
b This value is not given in [MLB17] as their implementation only handles dimensions
that are multiples of 4. We estimated it from the given values for n = 68 (169 s) and
n = 72 (418 s).

10 The CPU frequency may not be the only property of the machines to take account of
for a perfect comparison: memory access delay, memory bandwidth and cache sizes
may have noticeable impacts.

140 L. Ducas

vector found in Darmstadt Lattice challenge [SG10] of dimension 116 (seed 0),
since May 2014, and reported having used a sieve algorithm. According to Herold
and Kirshanova [HK17, Acknowledgments], the algorithm used by Kleinjung is
similar to theirs.

Another Sieving record was achieved by Bos et al. [BNvdP14], for an ideal
lattice of dimension 128, exploiting symmetries of ideal lattices to improve time
and memory substantially. The computation ran over 1024 cores for 9 days.
Similar computation have been run on GPU’s [YKYC17], using 8 GPU’s for
about 35 days.

6 Conclusion

6.1 Sieve will Outperform Enumeration

While this statement is asymptotically true, it was a bit unclear where the cross-
over should be, and therefore whether sieving algorithms have any practical
relevance for concrete security levels. For example, it is argued in [MW16] that
the cross-over would happen somewhere between n = 745 and n = 1895.

Our new results suggest otherwise. We do refrain from computing a cross-
over dimension from the fits of Fig. 3 which are far from reliable enough for such
an extrapolation; our prediction is of a different nature.

Our prediction is that—unless new enumerations techniques are discovered—
further improvements of sieving techniques and implementations will outperform
enumeration for exact-SVP in practice, for reachable dimensions, maybe even
as low as n = 90. This, we believe, would constitute a landmark result. This
prediction is backed by the following guesstimates, but also by the belief that
fine-tuning, low-level optimizations and new ideas should further improve the
state of the art. Some avenues for further improvements are discussed in Sect. 6.2.

Guesstimates. We can try to guesstimate how our improvements would combine
with other techniques, in particular with List-Decoding Sieve [BDGL16]. The
exact conclusion could be affected by many technical details, and is mostly meant
to motivate further research and implementation effort.

Mariano et al. [MLB17] report a running time of 1850s for LDSieve [BDGL16]
in dimension n = 76. First, the XOR-POPCNT trick is not orthogonal to LSH tech-
niques, so we shall omit it.11 The progressive sieving trick provides a speed up
of about 4 in the relevant dimensions (V1 vs V2). Then, our main contribution
offers 14 dimensions “for free”, (n = 90, dlast = 14). More accurately, the itera-
tion for increasing d would come at cost a factor

∑
i≥0(

3
2)−i/2 ≈ 5.5. Overall we

may expect to solve exact-SVP 90 in time ≈ 5.5 · 1850/4 ≈ 2500 s. In compar-
ison, fpylll’s implementation of BKZ 2.0 [CN11] solved exact-SVP in average
time 2612 s over Darmstadt lattice challenge 90 (seed 0) over 20 samples on our
machine. For a fairer comparison across different machines, this Enumeration
timing could be scaled up by 3.6GHz/2.3GHz ≈ 1.5.

11 It could still be that, with proper tuning, combining them gives an extra speed-up.

Shortest Vector from Lattice Sieving 141

6.2 Avenues for Further Improvements

Pruning in SubSieve. As we mentioned in Sect. 3.3, our optimistic condition (3)
can be viewed as a form of pruning: this condition corresponds in the framework
of [GNR10,Che13] to a pruning vector of the form (1, 1, . . . , 1, γ, . . . γ) ∈ R

n with
d many 1’s, and γ = (n − d)/n. A natural idea is to attempt running SubSieve
using γ < (n − d)/n, i.e. being even more optimistic than condition (3). Indeed,
rather than cluelessly increasing d at each iteration, we could compute for each
d the success probability, and choose the value of d giving the optimal cost over
success probability ratio.

Walking beyond
√
4/3·gh(Ld). Noting m = n− d, another idea could consist

of trying to get more vectors than the
√

4/3
m

shortest for a similar or slightly
higher cost than the initial sieve, as this would allow d to increase a little bit.
For example, we can extract the sublist A of all the vectors of length less than
α · gh(Ld) where α ≤ √

4/3 from the initial sieve, and use them to walk inside
the ball of radius β · gh(Ld) ≥ √

4/3 where α
β

√
β2 − α2/4 = 1. Indeed, one can

show that the volume of (v + αB) ∩ (βB) = Ω(nc) for some constant c, where
‖v‖ = β. According to the Gaussian Heuristic, this means that from any lattice
point in the ball of radius β + ε, there exists a step in the list A that leads to
another lattice point in the ball of radius β + ε, for some ε = o(1). This kind of
variation have already been considered in the Sieving literature [BGJ13,Laa16].

Each step of this walk would cost αm and there are βm+o(m) many points to
visit. Note that in our context, this walk can be done without extra memory, by
instantly applying Babai lifting and keeping only interesting lifted vectors. We
suspect that this approach could be beneficial in practice for β =

√
4/3 + o(1),

if not for the running time, at least for the memory complexity.

Amortization Inside BKZ. We now consider two potential amortizations
inside BKZ. Both ideas are not orthogonal to each others (yet may not be incom-
patible). If our SubSieve algorithm is to be used inside BKZ, we suggest fixing
dlast (say, using the optimistic simulation), and to accept that we may not always
solve SVP exactly; this is already the case when using pruned enumeration.

Already pre-processed. One notes that SubSieve+ does more than ensure the
shorteness of the first vector, and in fact attempts a partial HKZ reduction.
This means that the second block inside the BKZ loop is already quite reduced
when we are over with the first one. One could therefore hope that directly
starting the iteration of Sect. 3.3 at d = dlast could be sufficient for the second
block, and so forth.

Optimistically, this would lead to an amortization factor f of f =∑
i≥0(

4
3)−i = 4, or even f =

∑
i≥0(

3
2)−i/2 ≈ 5.5 depending on which sieve

is used. In practice, it may be preferable to start at d = dlast − 1 for example.
5 blocks for the price of 9/4. A second type of amortization consists of over-
shooting the blocksize by an additive term k, so as to SVP-reduce k + 1 con-
secutive blocks of dimension b for the price of one sieving in dimension b + k.

142 L. Ducas

Indeed, an HKZ-reduction of size b+k as attempted by SubSieve+ directly guar-
entees the BKZ-b reduction of the first k + 1 blocks: we may jump directly by
k + 1 blocks. This overshoot costs a factor (3/2)k/2 using the List-Decoding-
Sieve [BDGL16]. We therefore expect to gain a factor f = (k + 1)/(3/2)k/2,
which is maximal at k = 4, with f = 20/9 ≈ 2.2.

Further, we note that the obtained basis could be better than a usual BKZ-b
reduced basis, maybe even as good as a BKZ-(b + k−1

2) reduced basis. If so, the
gain may be as large as f ′ = (k + 1)/(3/2)(k+1)/4, which is maximal at k = 9,
with f ′ ≈ 3.6.

Acknowledgments. The author wishes to thank Koen de Boer, Gottfried Herold,
Pierre Karman, Elena Kirshanova, Thijs Laarhoven, Marc Stevens and Eamonn
Postlethwaite for enlightening conversations on this topic. The author is also extremely
grateful to Martin Albrecht and the FPLLL development team for their thorough work
on the fplll and fpylll libraries. This work was supported by a Veni Innovational
Research Grant from NWO under project number 639.021.645.

References

[Ajt99] Ajtai, M.: Generating hard instances of the short basis problem. In:
Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999.
LNCS, vol. 1644, pp. 1–9. Springer, Heidelberg (1999). https://doi.
org/10.1007/3-540-48523-6 1

[AKS01] Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the short-
est lattice vector problem. In: 33rd Annual ACM Symposium on The-
ory of Computing, pp. 601–610. ACM Press, July 2001

[AN17] Aono, Y., Nguyen, P.Q.: Random sampling revisited: lattice enu-
meration with discrete pruning. In: Coron, J.-S., Nielsen, J.B. (eds.)
EUROCRYPT 2017. LNCS, vol. 10211, pp. 65–102. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-56614-6 3

[Bab86] Babai, L.: On Lovász’ lattice reduction and the nearest lattice point
problem. Combinatorica 6(1), 1–13 (1986)

[BDGL16] Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in
nearest neighbor searching with applications to lattice sieving. In:
Krauthgamer, R. (ed.) 27th Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pp. 10–24. ACM-SIAM, January 2016

[BGJ13] Becker, A., Gama, N., Joux, A.: Solving shortest and closest vector
problems: The decomposition approach. Cryptology ePrint Archive,
Report 2013/685 (2013). http://eprint.iacr.org/2013/685

[BGJ15] Becker, A., Gama, N., Joux, A.: Speeding-up lattice sieving without
increasing the memory, using sub-quadratic nearest neighbor search.
Cryptology ePrint Archive, Report 2015/522 (2015). http://eprint.
iacr.org/2015/522

[BLS16] Bai, S., Laarhoven, T., Stehlé, D.: Tuple lattice sieving. LMS J. Com-
put. Math. 19(A), 146–162 (2016)

[BNvdP14] Bos, J.W., Naehrig, M., van de Pol, J.: Sieving for shortest vectors
in ideal lattices: a practical perspective. Cryptology ePrint Archive,
Report 2014/880 (2014). http://eprint.iacr.org/2014/880

https://doi.org/10.1007/3-540-48523-6_1
https://doi.org/10.1007/3-540-48523-6_1
https://doi.org/10.1007/978-3-319-56614-6_3
http://eprint.iacr.org/2013/685
http://eprint.iacr.org/2015/522
http://eprint.iacr.org/2015/522
http://eprint.iacr.org/2014/880

Shortest Vector from Lattice Sieving 143

[Cha02] Charikar, M.: Similarity estimation techniques from rounding algo-
rithms. In: 34th Annual ACM Symposium on Theory of Computing,
pp. 380–388. ACM Press, May 2002

[Che13] Chen, Y.: Réduction de réseau et sécurité concrète du chiffrement
complètement homomorphe. Ph. D. thesis (2013)

[CN11] Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates.
In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073,
pp. 1–20. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-25385-0 1

[FBB+15] Fitzpatrick, R., Bischof, C., Buchmann, J., Dagdelen, Ö., Göpfert, F.,
Mariano, A., Yang, B.-Y.: Tuning GaussSieve for speed. In: Aranha,
D.F., Menezes, A. (eds.) LATINCRYPT 2014. LNCS, vol. 8895, pp.
288–305. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
16295-9 16

[FK15] Fukase, M., Kashiwabara, K.: An accelerated algorithm for solving
svp based on statistical analysis. J. Inf. Process. 23(1), 67–80 (2015)

[FPL16a] FPLLL development team. Strategizer, an optimizer for pruned enu-
meration (2016). https://github.com/fplll/fpylll

[FPL16b] FPLLL development team. fplll, a lattice reduction library (2016).
https://github.com/fplll/fplll

[FPL16c] FPLLL development team. fpylll, a python interface for fplll

(2016). https://github.com/fplll/fpylll
[GN08] Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N.

(ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-78967-3 3

[GNR10] Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using
extreme pruning. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 257–278. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-13190-5 13

[HK17] Herold, G., Kirshanova, E.: Improved algorithms for the approximate
k -list problem in euclidean norm. In: Fehr, S. (ed.) PKC 2017. LNCS,
vol. 10174, pp. 16–40. Springer, Heidelberg (2017). https://doi.org/
10.1007/978-3-662-54365-8 2

[HPS98] Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public
key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423,
pp. 267–288. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0054868

[HPS11] Hanrot, G., Pujol, X., Stehlé, D.: Analyzing blockwise lattice algo-
rithms using dynamical systems. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 447–464. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22792-9 25

[HS07] Hanrot, G., Stehlé, D.: Improved analysis of kannan’s shortest lattice
vector algorithm. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol.
4622, pp. 170–186. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-74143-5 10

[Kan83] Kannan, R.: Improved algorithms for integer programming and
related lattice problems. In: 15th Annual ACM Symposium on Theory
of Computing, pp. 193–206. ACM Press, April 1983

[Kle00] Klein, P.N.: Finding the closest lattice vector when it’s unusually close.
In: Shmoys, D.B. (eds.) 11th Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pp. 937–941. ACM-SIAM, January 2000

https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/978-3-319-16295-9_16
https://doi.org/10.1007/978-3-319-16295-9_16
https://github.com/fplll/fpylll
https://github.com/fplll/fplll
https://github.com/fplll/fpylll
https://doi.org/10.1007/978-3-540-78967-3_3
https://doi.org/10.1007/978-3-642-13190-5_13
https://doi.org/10.1007/978-3-642-13190-5_13
https://doi.org/10.1007/978-3-662-54365-8_2
https://doi.org/10.1007/978-3-662-54365-8_2
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/978-3-642-22792-9_25
https://doi.org/10.1007/978-3-642-22792-9_25
https://doi.org/10.1007/978-3-540-74143-5_10
https://doi.org/10.1007/978-3-540-74143-5_10

144 L. Ducas

[Laa15a] Laarhoven, T.: Search problems in cryptography (2015). http://thijs.
com/docs/phd-final.pdf

[Laa15b] Laarhoven, T.: Sieving for shortest vectors in lattices using angu-
lar locality-sensitive hashing. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9215, pp. 3–22. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-47989-6 1

[Laa16] Laarhoven, T.: Randomized lattice sieving for the closest vector
problem (with preprocessing). Cryptology ePrint Archive, Report
2016/888 (2016). http://eprint.iacr.org/2016/888

[LLL82] Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with
rational coefficients. Math. Ann. 261(4), 515–534 (1982)

[LM18] Laarhoven, T., Mariano, A.: Progressive lattice sieving. In: PQcrypto
2018, Cryptology ePrint Archive, Report 2018/079 (2018, to appear).
https://eprint.iacr.org/2018/079

[MLB17] Mariano, A., Laarhoven, T., Bischof, C.: A parallel variant of
LDSIEVE for the SVP on lattices. In: 2017 25th Euromicro Inter-
national Conference on Parallel, Distributed and Network-based Pro-
cessing (PDP), pp. 23–30. IEEE (2017)

[MV10] Micciancio, D., Voulgaris, P.: Faster exponential time algorithms for
the shortest vector problem. In: Charika, M. (ed.) 21st Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 1468–1480. ACM-
SIAM, January 2010

[MW15] Micciancio, D., Walter, M.: Fast lattice point enumeration with mini-
mal overhead. In: Indyk, P. (ed.) 26th Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 276–294. ACM-SIAM, January 2015

[MW16] Micciancio, D., Walter, M.: Practical, predictable lattice basis reduc-
tion. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS,
vol. 9665, pp. 820–849. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49890-3 31

[Ngu09] Nguyen, P.Q.: Hermite’s constant and lattice algorithms. In: Nguyen,
P., Vallée, B. (eds.) The LLL Algorithm. Information Security and
Cryptography. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-02295-1 2

[NV08] Nguyen, P.Q., Vidick, T.: Sieve algorithms for the shortest vector
problem are practical. J. Math. Cryptol. 2(2), 181–207 (2008)

[Poh81] Pohst, M.: On the computation of lattice vectors of minimal
length, successive minima and reduced bases with applications. ACM
SIGSAM Bull. 15(1), 37–44 (1981)

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and
cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th Annual ACM
Symposium on Theory of Computing, pp. 84–93. ACM Press, May
2005

[SE94] Schnorr, C.-P., Euchner, M.: Lattice basis reduction: improved prac-
tical algorithms and solving subset sum problems. Math. Program.
66(1–3), 181–199 (1994)

[SG10] Schneider, M., Gama, N.: SVP Challenge (2010). https://
latticechallenge.org/svp-challenge

[SH95] Schnorr, C.P., Hörner, H.H.: Attacking the chor-rivest cryptosystem
by improved lattice reduction. In: Guillou, L.C., Quisquater, J.-J.
(eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 1–12. Springer, Hei-
delberg (1995). https://doi.org/10.1007/3-540-49264-X 1

http://thijs.com/docs/phd-final.pdf
http://thijs.com/docs/phd-final.pdf
https://doi.org/10.1007/978-3-662-47989-6_1
http://eprint.iacr.org/2016/888
https://eprint.iacr.org/2018/079
https://doi.org/10.1007/978-3-662-49890-3_31
https://doi.org/10.1007/978-3-662-49890-3_31
https://doi.org/10.1007/978-3-642-02295-1_2
https://doi.org/10.1007/978-3-642-02295-1_2
https://latticechallenge.org/svp-challenge
https://latticechallenge.org/svp-challenge
https://doi.org/10.1007/3-540-49264-X_1

Shortest Vector from Lattice Sieving 145

[Ste10] Stehlé, D.: Floating-point LLL: theoretical and practical aspects. In:
Nguyen, P., Vallée, B. (eds.) The LLL Algorithm. Information Security
and Cryptography, pp. 179–213. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-02295-1 5

[TKH18] Teruya, T., Kashiwabara, K., Hanaoka, G.: Fast lattice basis reduction
suitable for massive parallelization and its application to the shortest
vector problem. Cryptology ePrint Archive, Report 2018/044 (2018,
to appear). https://eprint.iacr.org/2018/044

[YD16] Yu, Y., Ducas, L.: Second order statistical behavior of LLL and BKZ.
In: Adams, C., Camenisch, J. (eds.) SAC 2017. LNCS, vol. 10719,
pp. 3–22. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
72565-9 1

[YKYC17] Yang, S.-Y., Kuo, P.-C., Yang, B.-Y., Cheng, C.-M.: Gauss Sieve Algo-
rithm on GPUs. In: Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol.
10159, pp. 39–57. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-52153-4 3

https://doi.org/10.1007/978-3-642-02295-1_5
https://doi.org/10.1007/978-3-642-02295-1_5
https://eprint.iacr.org/2018/044
https://doi.org/10.1007/978-3-319-72565-9_1
https://doi.org/10.1007/978-3-319-72565-9_1
https://doi.org/10.1007/978-3-319-52153-4_3
https://doi.org/10.1007/978-3-319-52153-4_3

	Shortest Vector from Lattice Sieving: A Few Dimensions for Free
	1 Introduction
	2 Preliminaries
	2.1 Notations and Basic Definitions
	2.2 Lattice Reduction
	2.3 Sieve Algorithms

	3 The SubSieve Algorithm and its Analysis
	3.1 Approach
	3.2 Complexity Analysis
	3.3 (Progressive) Iteration as Pre-processing
	3.4 Tentative Prediction of d on Quasi-HKZ Reduced Basis

	4 Other Optimizations and Implementation Details
	4.1 Baseline Implementation
	4.2 The XOR-POPCNT Trick (a.k.a. SimHash)
	4.3 Progressive Sieving
	4.4 Implementation Details

	5 Experiments and Performances
	5.1 The Dimension Gain d in Practice
	5.2 Performances
	5.3 Performance Comparison to the Literature

	6 Conclusion
	6.1 Sieve will Outperform Enumeration
	6.2 Avenues for Further Improvements

	References

