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Abstract

Solving multivariate quadratic systems is of great importance for many cryptographic applications.
In this master thesis, the state-of-the-art algorithms of solving multivariate quadratic systems are
reviewed. Subsequently an adaption of an existing algebraic approach is proposed and imple-
mented. The adapted algorithm is highly parallelizable and is suitable for solving multivariate
quadratic systems on the GPU architecture. With one single commercial Nvidia GTX 980 graphics
card, the proposed algorithm is able to solve a multivariate quadratic system of 134 equations in
67 variables in 98.39 hours, while the fastest existing algorithm requires 6200 hours for the same
problem with one CPU. The experimental results of solving all the Fukuoka type I MQ challenges,
where n = 55 ∼ 74, are also given in this thesis. Based on the result, a multivariate quadratic
system of 184 equations in 92 variables is shown to provide 80 bits of security with respect to the
proposed algorithm and can be solved with 61617 GTX 980 graphics cards in one year. In addition,
this thesis shows that with a cluster of 3500 GTX 980 graphics cards, the underlying multivariate
quadratic system of a post-quantum cryptographic scheme which consists of 80 equations in 84
variables could be solved on average in one year.

An Adaption of the Crossbred Algorithm for Solving Multivariate Quadratic Systems over F2 on GPUs iii





Acknowledgement

I would like to thank all the people that helped me during this master thesis project. First of all,
I would thank my supervisor Tanja for her guidance and her unexpected feedback in the middle
of the night. I would also thank Dan, who gave me access to the Saber clusters, which is probably
the most luxurious toy that I have ever played with. I would also thank Ruben, who provided me
great support and has been the source of inspiration during my stay in Darmstadt. I would also
thank the people that I met at Fraunhofer, who have been kind to me. I would also thank the
family at Istanbul, whose tasty meals made summer 2017 especially productive. I would thank my
family for their support for my master study, and my friends, who are always there when I need
to take the day off.

Eindhoven
November 2017 Kai-Chun Ning

An Adaption of the Crossbred Algorithm for Solving Multivariate Quadratic Systems over F2 on GPUs v





Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Preliminaries 3
2.1 Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Monomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Polynomial over a Finite Field . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.3 Polynomial Ring over a Finite Field . . . . . . . . . . . . . . . . . . . . . . 3
2.1.4 Monomial Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.5 Multidegree of a Polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.6 Multivariate Division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.7 Multivariate Polynomial Systems . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.8 Variety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.9 Ideal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.10 Ideal of Leading Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.11 Macaulay Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.12 Gray Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Computer Architecture Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 CUDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Solving Multivariate Quadratic Systems 17
3.1 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
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Chapter 1

Introduction

1.1 Motivation

With the advent of quantum computing, an adversary can efficiently break universally adopted
public key cryptographic schemes, e.g. RSA and elliptic curves, with a sufficiently large quantum
computer. In order to mitigate this imminent threat, cryptographic schemes which are resist-
ant against quantum computers have drawn great attention from academia. These schemes are
collectively referred to as post-quantum cryptography.

Multivariate cryptography is considered a potential candidate for post-quantum cryptography.
Throughout the past few decades, various asymmetric encryption schemes [53, 24, 55] based on
Hidden Field Equations (HFE) [39] as well as signature schemes [22, 25, 52, 42, 17, 28] have been
proposed. As for symmetric encryption scheme, a stream cipher QUAD [14] has been proposed
and analyzed [59].

Multivariate cryptography relies on the difficulty of solving a system of m polynomial equations
in n variables over a finite field. The complexity of solving a multivariate polynomial system (MP
problem) or a multivariate quadratic system (MQ problem) where coefficients of the monomials
are independently and uniformly distributed (i.e. random) is well-known to be NP-hard. In fact,
even testing for the existence of one solution is NP-complete [34]. Note that an arbitrary MP
system can be transformed into an equivalent MQ system by substituting monomials of degree
larger than 2 with new variables and introducing extra equations to the system [40].

The difficulty of solving the MP or MQ problem can be used to create a one-way trapdoor
function. For example, it can be constructed by choosing a matrix P ′ whose n rows represent an
invertible polynomial in one unknown over a finite field Fqn , which is the extension field of Fq.
Subsequently, two linear transformation matrices S and T , each of which consists of n polynomials
in n variables over Fq, are created. The secret key is the set {S, P ′, T} while the public key is
simply the product of those three matrices P = S · P ′ · T [39]. Note that since higher degree
implies more coefficients to store,MQ systems are preferred overMP systems for smaller public
key size. The invertibility of the secret matrices allows the secret key owner to efficiently compute
the inverse while their product P , with proper choice of S and T , appears as a random multivariate
system. Nevertheless, the public key is created based on the chosen private key hence inevitably
reflects the set {S, P ′, T} as a hidden structure in P , which is often exploited by cryptanalysis
on multivariate cryptography schemes [41, 32]. Those scheme specific attacks can therefore solve
these seemingly random systems with much lower complexity than completely random systems.

This thesis is not restricted to any particular cryptography scheme and focuses on generic
attacks for solving completely random MQ systems over F2. Solving MQ systems over F2 is
essential for cryptanalysis of various cryptographic schemes [39, 42, 17, 18, 54] as these schemes
are based on MQ systems over F2. Despite the impracticality, it is also possible to recover an
AES key by modeling it as an overdetermined MQ system of 8000 equations and 1600 variables
over F2 [47, 27]. In addition, a polynomial system over any extension field F2n can be reduced into
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CHAPTER 1. INTRODUCTION

an equivalent system over F2 using Weil descent [36] and, as mentioned above, any MP system
can be transformed into an equivalent MQ system. Solving MQ problems over F2 is the core of
aforementioned cryptographic applications and therefore is of great importance.

1.2 Contribution

The contribution of this thesis includes a review of the state-of-the-art algorithms of solvingMQ
problems and an adaption of an existing algebraic approach which is suitable for solving MQ
problems on the GPU architecture. In addition, programming techniques and caveats for imple-
menting the proposed algorithm are also documented. With one single commercial Nvidia GTX
980 graphics card, a program called MQsolver implemented according to the proposed algorithm
is able to solve an MQ system of 134 equations in 67 variables in 98.39 hours, while the fastest
existing algorithm requires 6200 hours for the same problem instance with one CPU [40]. The
experimental results of solving all the Fukuoka type I MQ challenges where n = 55 ∼ 74 are also
given in this thesis. Based on the result, an adversary supported by a nation or a multinational
conglomerate is shown to be able to solve an MQ system of 184 equations in 92 variables, which
provides 80 bits of security against the proposed algorithm, with 61617 GTX 980 graphics cards
in one year. In addition, this thesis shows that with a cluster of 3500 GTX 980 graphics cards,
the expected computation time of solving an MQ system of 80 equations in 84 variables which
was claimed to provide 80 bits of security [54] and is the underlying problem of a post-quantum
cryptographic scheme [54] is one year.

1.3 Thesis Organization

The rest of the thesis is structured as follows. Chapter 2 introduces the preliminaries, includ-
ing mathematical notations and computer architectures. Chapter 3 explains state-of-the-art al-
gorithms for solving random MQ systems and proposes an adaption based on one of the existing
algorithms. Thereafter implementation details and design choices for the proposed algorithm are
documented in Chapter 4. Finally, Chapter 5 presents the experimental results, discusses proper
choice of various parameters for the proposed algorithm and analyzes their implications.

2 An Adaption of the Crossbred Algorithm for Solving Multivariate Quadratic Systems over F2 on GPUs



Chapter 2

Preliminaries

2.1 Mathematical Preliminaries

This section introduces mathematical notations and definitions relevant to this thesis.

2.1.1 Monomial

A monomial in x1, x2, . . . , xn is a product in the form xα1
1 xα2

2 · · ·xαn
n , where the exponents α1, α2, . . . , αn

are non-negative integers. This notation can be further simplified to

xα1
1 xα2

2 · · ·xαn
n = xα, where α = (α1, α2, . . . , αn) ∈ Zn≥0, and when α = (0, 0, . . . , 0), xα = 1.

The degree of the monomial xα is defined as |α| = α1 + α2 + · · ·+ αn.

2.1.2 Polynomial over a Finite Field

A polynomial f in x1, x2, . . . , xn with coefficients in a finite field Fq, where q is a prime power
(q = pk, p is a prime and k is a positive integer), is a finite linear combination of monomials.

f =
∑
α∈S

aαx
α, aα ∈ Fq, where S is a finite set of n-tuples ∈ Zn≥0.

If aα 6= 0, then aαx
α is a term of f . The degree of f , denoted as deg(f), is the maximal |α| with

aα 6= 0. The zero polynomial is the polynomial whose coefficients aα are all zero.

2.1.3 Polynomial Ring over a Finite Field

The set of all polynomials in x1, x2, . . . , xn with coefficients in Fq is denoted as Fq[x1, x2, . . . , xn].
Clearly, the sum and product of two polynomials is again a polynomial. A polynomial g divides
a polynomial f if f = g · h, for some h ∈ Fq[x1, x2, . . . , xn]. The multiplicative inverse of f is
defined as the polynomial g such that 1 = f · g. Note that Fq[x1, x2, . . . , xn] is not a field but a
commutative ring, which is closed under addition and multiplication. However, for a polynomial
f in the ring that is not a non-zero constant polynomial, e.g. x1, its multiplicative inverse might
not exist.

2.1.4 Monomial Order

Since a monomial xα1
1 xα2

2 · · ·xαn
n can be represented via the n-tuple α = (α1, α2, . . . , αn) ∈ Zn≥0 ⊂

Zn, there exists a one-to-one correspondence between the monomials in Fq[x1, x2, . . . , xn] and
Zn≥0. If an ordering in Zn is established then so is a monomial order. A polynomial is an Fq-linear
combination of monomials therefore the ability to arrange its terms in descending or ascending
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order is naturally desired. There are many approaches to establishing an ordering in Zn but most
of the resulting orderings cannot be used to arrange monomials in this manner. To sort monomials
in ascending of descending order, the ability to compare every pair of monomials and establish
their proper relative position is necessary. The ordering must therefore be a total ordering, which
means for every pair of monomials (xα, xβ), exactly one of the following cases is true

xα > xβ , xα = xβ , xα < xβ ,

and additionally transitivity should be satisfied

xα > xβ and xβ > xγ implies xα > xγ .

Now consider the sum and product of two polynomials. Ordering monomials of the sum is trivial.
On the other hand, since multiplication in a polynomial ring distributes over addition, the product
of two polynomials can be viewed as the sum of products obtained by multiplying the first poly-
nomial by a monomial from the second polynomial

f · g = f ·
∑
α∈S

aαx
α =

∑
α∈S

f · aαxα.

It is desirable to keep the leading term of the product f ·aαxα as the product of the leading term of
f and aαx

α, otherwise extra effort for identifying the leading term will be needed. One additional
property is hence required

if xα > xβ then for any xγ , xγ · xα > xγ · xβ ,

which translates to

if α > β in the ordering on Zn, then for any γ ∈ Zn, α+ γ > β + γ.

Finally, to ensure multivariate division (introduced in Section 2.1.6) eventually terminates, the
monomial order should be a well-ordering. In other words, every non-empty subset of monomials
has exactly one smallest element according to the ordering.

Let α = (α1, α2, . . . , αn) and β = (β1, β2, . . . , βn), both ∈ Zn≥0. The rest of this section intro-
duces three monomial orders which satisfy the desired properties listed above.

Lexicographical Order

α >lex β (i.e. xα >lex x
β) if and only if the leftmost non-zero entry in the vector α − β ∈ Zn is

positive. For example,

α = (1, 2, 0) >lex β = (0, 3, 4) since α− β = (1,−1,−4).

Note that for variables x1, x2, . . . xn

x1 >lex x2 >lex · · · >lex xn since (1, 0, . . . , 0) >lex (0, 1, . . . , 0) >lex · · · >lex (0, 0, . . . , 1).

Graded Lexicographical Order

α >glex β if |α| > |β| or |α| = |β| and α >lex β. In other words, monomials are ordered by their
degree first, then ties are broken with lexicographical order.
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Graded Reverse Lexicographical Order

α >grlex β if |α| > |β| or |α| = |β| and the rightmost non-zero entry in the vector α−β is negative.
For example,

α = (1, 5, 2) >grlex β = (4, 1, 3) since |α| = |β| and α− β = (−3, 4,−1).

Both graded lexicographical order and graded reverse lexicographical order use monomial degree to
order monomials first, then to break ties, graded lexicographical order looks at variables from the
left and favors larger powers. In contrast, graded reverse lexicographical order looks at variables
from the right and favors smaller powers.

2.1.5 Multidegree of a Polynomial

Given a polynomial f as in Section 2.1.2 and a monomial order, define

1. multidegree of f : multideg(f) is the largest non-zero α in S with respect to the monomial
order,

2. leading coefficient of f : LC(f) is the coefficient amultideg(f),

3. leading monomial of f : LM(f) is the monomial xmultideg(f), with coefficient 1, and

4. leading term of f : LT(f) is the term amultideg(f) · xmultideg(f), i.e. LC(f) · LM(f).

2.1.6 Multivariate Division

With the definition of multidgree and a monomial order, univariate polynomial long division and
the remainder thereof can be extended to multivariate polynomials. Given a monomial order
and an ordered m-tuple (f1, f2, . . . , fm) of polynomials in a ring K[x1, x2, . . . , xn], multivariate
division1 can decompose an arbitrary polynomial f in the ring into

f = q1 · f1 + q2 · f2 + · · ·+ qm · fm + r

where the remainder r is either 0 or a linear combination of monomials which are not divisible by
any of the leading terms LT(f1), LT(f2), . . . , LT(fm) with coefficients in the field K.

Note that the reminder depends on the order of the tuple hence may not be unique. For
example, let f1 = xy − 1, f2 = y2 − 1, f = xy2 − x and use lexicographical order x > y. Since
f = y(xy − 1) + y − x = x(y2 − 1), dividing f by (f1, f2) yields r = −x+ y while (f2, f1) yields
r = 0.

2.1.7 Multivariate Polynomial Systems

An MP system is a set of m multivariate polynomial equations f1 = 0, f2 = 0, . . . , fm = 0 in n
variables x1, x2, . . . xn, where coefficients of the polynomials belong to a field2 K. A solution to the
system is an n-tuple in Kn that satisfies all m equations. If the maximal degree of the equations
is two, then the system is referred to as an MQ system.

2.1.8 Variety

Given an MP system as in Section 2.1.7, the variety of the system, denoted as V(f1, f2, . . . , fm),
is the set of all solutions for the system.

V(f1, f2, . . . , fm) = {(a1, a2, . . . , an) ∈ Kn : fi(a1, a2, . . . , an) = 0, for all 1 ≤ i ≤ m}.

Trivially, a variety is a subset of Kn. A variety can be empty. For example, V(x2 + y2 + 1) = ∅
when the field is R.

1See Appendix A.1 for the algorithm.
2Not necessarily finite.
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2.1.9 Ideal

A subset I of a polynomial ring K[x1, x2, . . . , xn] is called an ideal if the following properties are
satisfied

1. The zero polynomial belongs to I.

2. If f, g are in I, then f + g ∈ I.

3. If f is in I then for any polynomial h in the ring K[x1, x2, . . . , xn], f · h ∈ I.

An ideal is similar to a subring. Both have to be closed under addition and multiplication, except
that for an ideal polynomials from the whole ring K[x1, x2. . . . , xn] instead of just from the subring
can be used for multiplication. Given an MQ system as in Section 2.1.7, the set of polynomials
generated by f1, f2, . . . , fm

〈f1, f2, . . . , fm〉 =

{
m∑
i=1

hi · fi, where h1, h2, . . . , hm are arbitrary polynomials in the ring

}

is an ideal of K[x1, x2, . . . , xn] and is referred to as the ideal generated by f1, f2, . . . , fm. An
ideal I is finitely generated3 if there exist generators f1, f2, . . . , fm in the ring such that I =
〈f1, f2, . . . , fm〉. If so, the set {f1, f2, . . . , fm} is referred to as a basis for the ideal I. An ideal
may have multiple different bases.

A variety V(f1, f2, . . . , fm) is determined by the ideal I = 〈f1, f2, . . . fm〉 generated by its
defining polynomials. If I can be generated by another basis {g1, g2, . . . gm′}, then the varieties
defined by both bases are identical. Therefore by changing basis, it may become easier to analyze
a variety. This concept is essential to algebraic approaches for solving MQ problems, which are
introduced in Chapter 3.

2.1.10 Ideal of Leading Terms

Given a monomial order, each f in a polynomial ring K[x1, x2, . . . , xn] has a unique leading term
LT(f). Let I be an ideal ⊆ K[x1, x2, . . . , xn], then

1. LT(I) is defined as the set of leading terms of non-zero elements of I.

2. 〈LT(I)〉 is the ideal generated by elements of LT(I).

2.1.11 Macaulay Matrix

A Macaulay matrix represents a system of polynomials extended from a base system F of m
polynomials of degree ≤ d in n variables. The Macaulay degree, denoted as D, is the maximal
degree of the polynomials in the extended system. Each row in a Macaulay matrix is the product
of a polynomial f in F by a monomial t such that deg(t · f) ≤ D. The columns of a row represent
coefficients of the monomials in the product and are ordered by a monomial order. The rows can
be ordered arbitrarily but in the rest of this thesis, they are arranged in descending order with
respect to >grlex based on their multiplier. Rows with an identical multiplier form a group where
they keep the same order as their base polynomials in F . For example, let F be an MQ system
of two polynomials in four variables x1, x2, x3, x4 over finite field F2

F =

{
f1 = x1x2 + x2x3 + x3

f2 = x1x4 + 1

3In fact, by Hilbert’s Basis Theorem, all ideals of K[x1, x2, . . . , xn] are finitely generated.
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then by simplifying with xi = x2i , 1 ≤ i ≤ 4, the Macaulay matrix of degree D = 4 extended from
F with respect to graded reverse lexicographical order is



x1x2x3x4 x1x2x3 x1x2x4 x1x3x4 x2x3x4 x1x2 x1x3 x2x3 x1x4 x2x4 x3x4 x1 x2 x3 x4 1

x1x2 · f1 1

x1x2 · f2 1 1

x1x3 · f1 1

x1x3 · f2 1 1

x2x3 · f1 1

x2x3 · f2 1 1

x1x4 · f1 1 1 1

x1x4 · f2
x2x4 · f1 1

x2x4 · f2 1 1

x3x4 · f1 1 1 1

x3x4 · f2 1 1

x1 · f1 1 1 1

x1 · f2 1 1

x2 · f1 1

x2 · f2 1 1

x3 · f1 1 1 1

x3 · f2 1 1

x4 · f1 1 1 1

x4 · f2 1 1

1 · f1 1 1 1

1 · f2 1 1



where all missing coefficients are zero.

Clearly, the number of columns in a Macaulay matrix is
∑D
i=0

(
n
i

)
, which is exactly the number

of monomials of degree ≤ D while the number of rows is the product of the number of monomials
of degree ≤ D − d and the number of equations in F . As shown above, a Macaulay matrix
extended from an MQ system F in n variables is highly sparse. Since the maximal number of
monomials in a polynomial f in F is term nummax =

(
n
2

)
+ n+ 1, which does not increase when

multiplying f by a monomial t, each row in a Macaulay matrix extended from F has at most
term nummax non-zero entries. In addition, if F is random and defined over F2 where half of the
coefficients are expected to be zero, the expected maximal number of non-zero entries in a row
becomes term nummax

2 .

2.1.12 Gray Code

A Gray code is a binary enumeration system where two consecutive encodings differ only by one
bit (see Table 2.1). Originally designed to prevent outburst of the number of electronic switches,
which is the number of bits that flip when changing from one state to the next, Gray codes
have been widely used for error correction in digital communication. Conversion between binary
encoding and Gray code encoding is computationally efficient [6]. For example, converting a 32-bit
binary integer b to its Gray code encoding g can be achieved by

g = b⊕ (b� 1)
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which takes a right shift and an xor operation. On the other hand, converting g back to b can be
done by

g1 = g ⊕ (g � 24)

g2 = g1 ⊕ (g1 � 23)

g3 = g2 ⊕ (g2 � 22)

g4 = g3 ⊕ (g3 � 21)

b = g4 ⊕ (g4 � 20)

which takes five right shift and five xor operations.

Decimal Value Binary Code Gray Code
0 0000 0000
1 0001 0001
2 0010 0011
3 0011 0010
4 0100 0110
5 0101 0111
6 0110 0101
7 0111 0100
8 1000 1100
9 1001 1101
10 1010 1111
11 1011 1110
12 1100 1010
13 1101 1011
14 1110 1001
15 1111 1000

Table 2.1: 4-bit Gray Code Encoding

2.2 Computer Architecture Preliminaries

This section first explains the architecture of CPUs and GPUs. Thereafter CUDA, the program-
ming framework developed by Nvidia for GPUs, is briefly introduced.

2.2.1 CPU

A modern multi-core CPU resides on a IC chip connected to the motherboard via a physical
connector called socket. A typical personal computer has only one socket while servers may have
multiple ones. The chip consists of several execution units called cores. Each core has generally
its own cache and arithmetic logic units (ALUs), with which a core is able to execute instructions
independently. A thread can be viewed as a series of instructions to be dispatched to a core. It
might be advantageous to dispatch multiple threads to a physical core. For example, with the
hyper-threading technology from Intel [7] or the Cluster MultiThreading [2] from AMD, a single
physical core appears as two logical execution units. If one of the threads is stalled, the other
one can take over the execution resources (e.g. ALUs and cache) so the core will not sit idle. In
addition, if execution resources of a core are sufficient for two logical threads, they can be executed
simultaneously.

Execution Model

Generally a CPU follows three steps to operate: fetch, decode, and execute. The instructions
to be executed are stored in the main memory and therefore need to be loaded into the CPU
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first. The location of the next instruction to execute is stored in a special register called program
counter. After the CPU retrieves the instruction, it increments the program counter and decodes
the instruction into signals that control different ALUs. Finally the ALUs execute the desired
operations, after which the entire procedure repeats. Usually fetch, decode, and execution of
three instructions is done at a time to achieve a completion rate of up to one instruction per cycle
per ALU. This technique is referred to as instruction pipelining and is generally applied to each
core inside the CPU. Therefore, a modern CPU is able to execute more than one instructions per
cycle, while the number of cycles per second is the inverse of the CPU frequency.

If one instruction requires the result of a previous instruction, which is called data dependency,
then the pipeline might have to be delayed in order to wait for the result. In addition, the
pipeline might need to start over if a jump instruction was executed, which renders instructions
fetched and decoded in the current cycle useless. The first problem can be mitigated by issuing
instructions that are independent from each other’s results, which is referred to as instruction-
level parallelism, while the second problem can be avoided by enforcing sequential execution or
alleviated with branch prediction.

Memory Hierarchy

Since instructions and data are stored in the main memory, which can require hundreds of cycle
to access, modern CPUs have multiple levels of caches to reduce memory access latency. Usually,
each core has its own private instruction and data cache, known as L1 instruction and L1 data
cache, respectively. For hyper-threading, those two types of cache memory are shared by two
logical threads deployed on a physical core (see Figure 2.1). Typically there are two lower levels
of cache memory known as L2 and L3, which are generally shared by all the cores. L2 and L3
cache are much larger but slower than the top level L1 cache and are only accessed when there is
a cache miss.

Figure 2.1: Memory Hierarchy on a CPU [3]

SIMD

Generally modern CPUs operate on 64-bit registers. Therefore, an operand can only be at most
64 bits. Some CPUs are however able to apply a single instruction on multiple data (SIMD) in
order to exploit data level parallelism. SIMD CPUs pack multiple operands into a vector (known
as vectorization) and store it into a special large register, whose size typically ranges from 128 bits
to 512 bits. Special instructions can then be issued to operate on these large registers to apply the
same operation on all operands at once. The number of operands packed into a vector is referred
to as the length of the vector or the SIMD width.
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2.2.2 GPU

A graphics processing unit (GPU) is a specialized circuit originally designed to accelerate graphics
processing. GPUs are designed to be efficient at processing data in parallel, which is the nature of
graphics processing. Over the years, usage of GPUs has been extended to applications other than
graphics, e.g. molecular modeling and artificial intelligence where algorithms exhibit this parallel
characteristic [4]. However, to fully utilize a GPU, a large degree of parallelism is necessary. A
serial program generally will run faster on a CPU. Therefore, a GPU is never used alone but as
an auxiliary computing device for a CPU. The main program is executed on the CPU and only
parts of the program that exhibit parallelism should be delegated to the GPU.

A GPU consists of an array of Streaming Multiprocessors (SM or SMX), each of which contains
hundreds of CUDA cores (see Figure 2.2). Despite the name, a CUDA core is in fact similar to a
CPU ALU, while an SM is analogous to a CPU core and can execute instructions independently.
In addition, a CUDA core does not have dedicated cache. Instead, a unified L1 cache in each SM
is shared by all CUDA cores in the SM (see Figure 2.3).

Figure 2.2: Architecture of a GPU [48]

Execution Model

Similar to CPUs, instructions are fetched, decoded, then finally executed and instruction pipelining
is applied to hide the latency. By design, all instructions are executed on a GPU in a SIMD manner.
One key difference between a SIMD CPU and a GPU is that the SIMD width (see Section 2.2.1) is
much larger on a GPU. Currently all Nvidia GPUs operate on an array of 32 registers. Therefore,
an add-instruction adds 32 numbers to another 32 numbers respectively, and writes the result
back to a set of 32 registers.

The size of all registers on a GPU is 32 bits. Hence, to process data types larger than 32
bits, e.g. double precision, multiple registers are required. CUDA cores operate on 32-bit data so
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Figure 2.3: Architecture of a Streaming Multiprocessor [48]

instructions that operate on 64-bit data types have to be emulated by issuing multiple instructions.
However, for some commonly used 64-bit operations in scientific computing, e.g. double-precision
multiplication, GPUs provide direct hardware support. Therefore for these 64-bit operations, only
one single instruction needs to be executed.

Similar to CPUs, an actual thread is a series of SIMD instructions and is dispatched to an SM
which is able to execute these instructions independently. An actual thread is however exposed to
programmers as a group of 32 logical threads. A GPU program is therefore written to operate on
individual registers, instead of an array of them. To differentiate the two, an actual thread is called
a warp while thread only refers to a logical thread. A warp consists of 32 threads since the SIMD
width is 32 on a GPU. Several warps form a block, which is the basic unit for distributing workload
to SMs. A GPU program is referred to as a kernel. To launch a kernel, its configuration including
the number of warps per block and the number of blocks, must be specified beforehand. Once
a block of warps acquires execution resources on an SM, it becomes active. Otherwise the block
stays resident. Each SM keeps a pool of active blocks. The maximum number of active blocks
depends on the amount of resources needed for a block and how many resources are available on
an SM. Once all warps in a block have finished, a new resident block takes over its resources and
becomes active. At each cycle, a warp scheduler in an SM selects some eligible warps ready for
execution from the active pool and issues instructions for them. If a warp is stalled due to, e.g.
memory access latency, the warp is marked and cannot be picked by the scheduler until the stall
is resolved. To utilize a GPU to the fullest, it is a common and recommended practice to launch
more blocks than the maximum number of active blocks for an SM so the hardware can be kept
busy all the time.
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SIMT

Another key difference between a SIMD CPU and a GPU is the hardware support of SIMD
divergence. Different threads in a warp are allowed to take divergent execution paths, which is not
possible for SIMD CPUs. A GPU achieves this by disabling some of the threads and executing
instructions for one execution path. For example, if a branch is to occur, the GPU disables the
threads that are to take the else-clause and executes instructions for the if-clause. Subsequently
it disables the threads that took the if-clause and executes instructions for the else-clause. The
SIMD divergence is handled automatically by the hardware and is completely transparent to
programmers. Nvidia calls this architecture Single Instruction Multiple Threads (SIMT), which
can be viewed as a variant of SIMD. Even though with SIMT programmers do not need to handle
SIMD divergence explicitly, it degrades performance and thus should still be avoided.

Memory Hierarchy

An integrated GPU that is often used for notebooks shares the system main memory with the
CPU while a discrete GPU generally has its own dedicated off-chip memory. A discrete GPU can
often achieve better memory throughput than a CPU because it uses wider system bus interface
as well as newer types of memory, e.g. GDDR5, GDDR5X, GDDR6.

Figure 2.4: Memory Hierarchy on a GPU [45]

Besides the off-chip memory, an SM can access the on-chip memory which locates directly
inside the SM. As Figure 2.4 shows, there are only two types of on-chip memory in terms of access
latency: registers and cache. Accessing registers requires a few cycles but data stored in registers
lasts only for the lifetime of the thread. Besides registers, an SM can access a pool of 64KB on-chip
cache which is partitioned into L1 cache and shared memory. Data stored in L1 cache lasts until
it is evicted and requires tens of cycles to access. On the other hand, shared memory serves as a
means for communication and sharing data between threads in a block. Therefore data stored in
shared memory lasts for the lifetime of the whole block. The size of the L1 cache and the shared
memory can be configured before a kernel launch, ranging from (16KB, 48KB), (32KB, 32KB), to
(48KB, 16KB) [50]. Note that L1 cache is disabled by default in some newer GPU architectures,
e.g. Maxwell, but can still be activated.
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In addition to cache memory inside an SM, a larger but slower unified L2 cache is provided
and shared by all SMs (see Figure 2.2), which is only accessed when a cache miss occurs.

Because of the limited amount of cache memory, most of the data must be stored on the off-chip
memory, which is split into global, local, constant and texture memory based on their purpose
and properties.

Figure 2.5: Different Types of Off-chip Memory on a GPU [50]

Global memory, which requires hundreds of cycles to access, stores most of the data for a
kernel. When data storage is allocated for a kernel by either the CPU or the kernel itself, a block
of the off-chip memory is carved out and becomes part of global memory.

As described in Section 2.2.2, the amount of execution resources allocated to a thread is subject
to the amount of resources available in an SM. If a thread requires more registers than the amount
that can be allocated, register spill occurs and temporary storage known as local memory is
allocated for the thread. Despite the name, local memory is allocated from the off-chip memory as
global memory and hence has the same access latency. Therefore, register spill should be avoided.

Constant memory is a special read-only region in the off-chip memory. The size of constant
memory is restricted to 64KB but its content is cached inside an SM (see Figure 2.4). Only
the first load-operation from a constant memory address incurs memory access to the off-chip
memory. All subsequent accesses can read the data directly from the on-chip constant cache.
However, even though the data is cached, if threads in a warp require data at different addresses
then the requests must be serialized (see Section 2.2.2), which increases access latency linearly to
the number of requests.

Similar to constant memory, texture memory is a region in the off-chip memory declared as
read-only by programmers. When memory access pattern exhibits 2D spatial locality, i.e. threads
read data from addresses that are physically adjacent as shown in Figure 2.6, accessing data in
texture memory requires less memory bandwidth than global memory. In addition, the content in
texture memory is also cached in an SM. As shown in Figure 2.4, the on-chip texture cache is used
to store data in texture memory. Texture cache is also used to store data in global memory that
is marked as read-only either explicitly by programmers or implictly by the compiler. Therefore,
texture cache is also referred to as read-only data cache.

Figure 2.6: 2D Spacial Locality [9]
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To sum up, global, texture, and constant memory, which are part of the off-chip memory, have
the largest access latency. However, access to texture memory may require less memory bandwidth
than global memory when 2D spatial locality is satisfied. In additon, the content of texture and
constant memory is cached. Inside an SM, cache memory and registers are available and their
access latencies are the lowest ones.

Note that the main memory on the computer can also be accessed by a discrete GPU via
the system bus interface but the speed is extremely slow. Therefore accessing the system main
memory should be avoided at all cost.

Coalesced Memory Access

One caveat of accessing data that is located in global memory is to avoid non-coalesced memory
access. A memory access is referred to as non-coalesced if threads in a warp do not access con-
secutive addresses in global memory. For example, given an array of 1024 32-bit integers that is
stored in row-major order on a GPU whose memory bus width is 128-bit, if threads in a warp
access array elements at indices 0, 127, 255, 383 and so on, as shown in Figure 2.7, the access is
non-coalesced and in total 32 global memory transactions are required since the elements are 128
bytes away from each other.

thread 1 → 0x000 0x004 . . .
thread 2 → 0x080 0x084 . . .
thread 3 → 0x100 0x104 . . .

...
...

thread 31 → 0xF00 0xF04 . . .
thread 32 → 0xF80 0xF84 . . .

Figure 2.7: Non-coalesced Memory Access

On the other hand, the access becomes coalesced when threads in a warp access the first 32
array elements at once (see Figure 2.8). In this manner, the whole chunk of 128 bytes of data
can be loaded with 128·8

128 = 8 memory transactions, which use the available memory bus width
optimally. Note that for older GPU architectures, consecutive threads in a warp have to access
consecutive memory addresses as in Figure 2.8 but for newer generations of GPUs the order of
the threads does not matter anymore. An access remains coalesced as long as the addresses are
consecutive.

thread 1 thread 2 thread 3 thread 4 . . . thread 31 thread 32
↓ ↓ ↓ ↓ ↓ ↓

0x000 0x004 0x008 0x00C . . . 0x078 0x07C
0x080 0x084 0x088 0x08C . . . 0x0F8 0x0FC

.

..
0xF80 0xF84 0xF88 0xF8C . . . 0xFF8 0xFFC

Figure 2.8: Coalesced Memory Access

Shared Memory Bank Conflict

Similar to global memory, one caveat of accessing data located in shared memory is to avoid shared
memory bank conflict. Shared memory is only accessible to threads in a block and is divided into
equally sized chunks which are mapped into memory modules called banks to allow concurrent
access. Each bank can only serve one request at a time. When a thread accesses data at n addresses
that are mapped into n memory banks, the data can be served at the same time, which yields
an effective bandwidth that is n times higher than the bandwidth of a single bank. Nevertheless,
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if multiple threads in a warp access addresses mapped to the same bank, the accesses must be
serialized, which increases the memory access latency linearly to the number of conflicting access
requests. One exception is when these threads access the same address, in which case the data
can be broadcast and therefore served to the threads simultaneously.

For GPU architectures since Kepler, there are 32 banks in total. Successive 32-bit words in
shared memory are mapped to successive memory banks whose size is also 32-bit. Consequently,
if threads in a warp access consecutively a char array, where the size of each element is one byte,
the first four elements are mapped to the same bank therefore the accesses of the first four threads
must be serialized. An approach to avoiding shared memory bank conflict is to interleave the
array elements in shared memory and change the access pattern of the threads accordingly. Note
that the size of the bank can be configured to 64-bit, which can help avoid shared memory bank
conflict when accessing 8-byte data types, e.g. double precision floating point values.

2.2.3 CUDA

CUDA4 is a programming framework and runtime environment created by Nvidia for general
purpose computing on GPUs. CUDA exposes the GPU execution model and memory hierarchy,
e.g. threads, blocks, shared and constant memory, as a set of language extensions. For the C
programming language, programmers use the C extension [49], which is referred to as CUDA C,
to write source code for GPU kernels. Nvidia provides a front-end compiler NVCC which isolates,
preprocesses the language extensions, subsequently generates binary code for GPU kernels, and
finally forwards the rest of the C code to a supported back-end compiler. Currently only GCC,
Clang, Intel C++ compiler and Microsoft Visual C compiler are supported [51].

In addition to the C language extensions, CUDA also provides a set of virtual machine in-
structions, known as PTX, which is independent from GPU architectures. In fact, NVCC first
translates the C source code for a GPU kernel from CUDA C to PTX instructions, which are
subsequently compiled into native instructions for the target GPU architecture.

4Originally an acronym for Compute Unified Device Architecture.
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Chapter 3

Solving Multivariate Quadratic
Systems

The number of solutions for a randomMQ system depends on the number of variables n and the
number of equations m. If m < n, the system is referred to as underdetermined and on average
has O(2n−m) solutions [35]. If m = n, the system is determined and has at least one solution for
large n with probability close to 1 − 1

e ≈ 0.63 [35]. Otherwise the system is overdetermined and
has either one or with overwhelming probability no solution.

It has been shown that extremely underdetermined (n > m(m + 1)) and overdetermined

(m > n(n+1)
2 ) systems can be solved in polynomial time with the Kipnis-Patarin-Goubin algorithm

and linearization, respectively [43, 42, 56]. Hence this thesis does not take systems beyond those
extreme points into consideration.

The common definition of solving an MQ system requires all the solutions to be enumerated.
This is possible when the system has a finite number of solutions, i.e. the variety defined by the
equations is zero-dimensional. If the solution set is too large or is infinite, which is often the
case with underdetermined systems, an alternative approach is to establish a description of the
solution set. In many cryptographic applications, however, it is sufficient to find one solution to
the system. For example, in the Unbalanced Oil and Vinegar (UOV) signature scheme [42], being
able to obtain a solution to the system allows one to forge a valid signature [33]. Therefore this
thesis aims to test the existence of solutions to a random MQ system and to provide one if the
system is solvable.

With this objective, this thesis focuses only on MQ systems where m ≥ n. In order to find
a solution to an underdetermined system, one can simplify the system with arbitrary values for
n−m variables (i.e. fixing n−m variables) to yield a determined system, which has at least one
solution with probability roughly 0.63. Therefore in terms of testing the existence of solutions,
an underdetermined system is no more difficult than the determined systems obtained by fixing
variables.

Finally, a common practice to simplify a system in n variables x1, x2, . . . , xn over a finite field
Fq is to take advantage of the cyclic nature of multiplication. By applying the equations xi = xqi ,
1 ≤ i ≤ n, all the individual variables that appeared in the system must have a degree smaller
than q. This technique can effectively reduce the number of columns in a Macaulay matrix (see
Section 2.1.11) so it is adopted by this thesis as well.

3.1 State of the Art

3.1.1 Gröbner Basis

Given a monomial order and an ideal I in a polynomial ring K[x1, x2, . . . , xn], a finite non-empty
generating subset G = {g1, g2, . . . , gt} of the ideal I is referred to as a Gröbner basis if the ideal
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of leading terms of I can be generated by the leading terms of elements in G, i.e.

〈LT (I)〉 = 〈LT (g1), LT (g2), . . . , LT (gt)〉.

Recall that in Section 2.1.6 it is shown that the remainder of multivariate division depends on the
order of the divisors. One important property of a Gröbner basis is that applying multivariate
division on a polynomial by a Gröbner basis yields a unique remainder. Therefore one can test
whether or not a polynomial f belongs to I by checking if the remainder of f on division by G is
zero. Note that the quotients however still depend on the order of the divisors in the tuple.

By Hilbert’s Basis Theorem, every ideal has a Gröbner basis. To compute it, one can apply
Buchberger’s algorithm [21], whose basic idea is to extend the original generating set by indu-
cing cancellation of leadings terms on existing generators and subsequently dropping generators
that became redundant during the process. Since computing a Gröbner basis involves canceling
leading terms which simplifies the polynomials and successively eliminates variables according to
a monomial order, it can be applied to solve MQ systems. For example, in order to test the
existence of at least one solution to the MQ system over C[x, y, z]

f1 = x2 + y2 + x2 − 1

f2 = x2 + z2 − y
f3 = x− z

which defines the ideal I = 〈f1, f2, f3〉, one can compute a Gröbner basis
g1 = x− z
g2 = y − 2z2

g3 = z4 + z2

2 −
1
4

with respect to lexicographical order x > y > z, which provides a description of the solution set
(i.e. the variety defined by the ideal I). In particular, the set is finite if and only if for each variable
there exists at least one generator g in the Gröbner basis whose leading term LT(g) contains only
that variable. If that is the case (as this example), then by solving equations involving only one
variable (g3) and backward substitution, a solution can be obtained.

Clearly, with this approach solving an MQ system is no more difficult than computing a
Gröbner basis for the system, whose complexity is related to the number of leading terms to
eliminate. It is therefore desirable to estimate the maximal degree of polynomials in a Gröbner
basis, which is referred to as the degree of regularity and is analyzed in [11].

Some variants of Buchberger’s algorithm [30, 31] have been proposed, which achieved better
performance by taking advantage of sparse linear algebra. It has been shown that these algorithms
are suitable for overdetermined systems or systems with hidden algebraic structure, but ineffective
for general random systems [11, 13]. In addition, all those variants as well as the original algorithm
require exponential storage. Therefore, solving a systems of 40 variables and equations is still out
of reach for most modern computers [38].

3.1.2 XL

The XL algorithm, which stands for eXtended Linearization, and its variants are a family of
algorithms [57] related to Gröbner basis based algorithms [10]. Given a degree D and an MQ
system F of m polynomials in n variables over a field K, the algorithm first extends the system to
degree D by multiplying the polynomials with all monomials whose degree is no larger than D−2

F ′ = {lj · fi, where fi ∈ F and lj ∈ K[x1, x2, . . . , xn], deg(lj) ≤ D − 2}

then it solves the extended system as if it were a linear system by treating each monomial in F ′ as
a new variable. With a monomial order that considers the original variables as the smallest ones,
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the extended system may yield solutions to some original variables or non-linear equations in one
single original variable, in which case Berlekamp’s algorithm [15] can be applied to compute the
solution. If so, the originalMQ system is simplified with the newly obtained solutions. Thereafter
the algorithm repeats this procedure until all variables have been solved. Clearly, termination of
the algorithm depends on the number of independent equations in the extended system. As shown
in [57], it depends on the parameter D and the minimal degree D for XL to terminate can be
computed based on the number of variables n and equations m. Note that instead of Gaussian
elimination, sparse linear algebra, e.g. block Lanczos algorithm [46] or block Wiedemann algorithm
[23] can be used to solve the extended system since it is inherently sparse.

XL cannot operate with underdetermined systems. In addition, it has been observed that XL
requires m − n ≥ 2 for reasonable performance [26]. Therefore a simple adaption is to fix some
variables in the original MQ system. The adapted XL algorithm is referred to as FXL [26] and
introduced in Section 3.1.4. In fact, fixing variables to simplify the original system is considered
a good approach in general to reduce the degree of regularity before applying the main algorithm
[57].

3.1.3 Fast Exhaustive Search

If an MQ system of m equations in n variables is defined over a rather small finite field, e.g.
F2, testing all possible solutions is a viable method to solve the system. Clearly, when testing
a solution there is no need to check with the rest of the equations once an equation does not
evaluate to zero. The expected number of equations to evaluate for each possible solution is only∑m−1
i=0

1
2i ≈ 2. Therefore, a full näıve exhaustive search for an MQ system of 64 variables and

equations over F2 is expected to evaluate degree-2 equations for 2 · 12 · 2
64 times, since on average

only half of the search space Fn2 needs to be explored.
Nevertheless, even with early aborts such complexity is still far from being practical on most

modern computers [20]. A more sophisticated exhaustive search algorithm based on partial deriv-
atives and Gray code enumeration (see Section 2.1.12) has been proposed [20] and implemented [8],
which is able to iterate over all solutions in the search space Fn2 with O(log2 n · 2n+2) elementary
bit operations. When testing for the existence of a solution, the algorithm can terminate once a
solution is found therefore even fewer bit operations are required.

The algorithm relies on the observation that the value of a function f at a point ~a can be
computed from the value of f and its partial derivatives ∂f

∂xi
at another point ~a′

f(~a) = f(~a′) +
∂f

∂xi
(~a′)

when only the ith coordinates (i.e. the value for xi) of ~a and ~a′ differ. This technique can be
applied recursively on the first order partial derivatives. When applying to an MQ system, the

first order partial derivatives become linear and the second order partial derivatives ∂2f
∂xi∂xj

reduce

to constants, in which case the recursion reaches the base case.
Gray code enumeration iterates over the search space Fn2 in a manner where two consecutive

points differ only by one coordinate. Therefore, it can be combined with the observation above to
efficiently evaluate the functions in the system over the search space. Note that the algorithm does
not need to evaluate all equations in the system at once. Instead only a subset of the equations
are checked with Gray code enumeration while the rest of the equations are only evaluated using
a näıve approach when a solution candidate is found. With this approach the complexity of the
algorithm does not rely on the number of equations in the system. The algorithm may however
terminate earlier for system with fewer equations since the solution set is expected to be larger. In
[20] the implementation chooses to evaluate a subset of 32 equations with Gray code enumeration
and leaves the rest of the system to näıve evaluation in order to fully utilize the 32-bit registers
provided by the hardware.

This algorithm trades memory space for computation time. For anMQ system F in n variables
over F2, a single function in F requires n + 1 bits to store the evaluation of the function and its
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partial derivatives, and
(
n
2

)
bits for the last order partial derivative where the function reduces

to constants. If the amount of memory is limited one may stop the recursion earlier at the first
order partial derivative and switch to näıve enumeration. Note that because of the cyclic nature of
Gray code enumeration, the evaluation of a partial derivative ∂f

∂xi∂xj
, where j > i, is accessed with

period 2j [20]. Therefore the algorithm can be further optimized by deliberately keeping frequently
accessed evaluation of partial derivatives in registers or cache, which will never be evicted under
optimal cache replacement policy [20].

3.1.4 FXL and BooleanSolve

As shown in Section 3.1.2, to solve anMQ system with an algebraic approach, instead of comput-
ing a Gröbner basis directly as described in Section 3.1.1, one can extend the system by multiplying
equations therein with monomials. The extended system can be represented by a Macaulay matrix
(see Section 2.1.11). It has been shown that for an MQ system F in n variables which defines
an ideal I, the reduced row echelon form of the Macaulay matrix extended from F contains the
coefficients of a Gröbner basis of I [44]. However, to obtain a whole Gröbner basis, a Macaulay
matrix with degree no less than the degree of regularity Dreg of the system is required. Assuming
a sufficient amount of memory is available, computing the reduced row echelon form of the Ma-

caulay matrix then requires p(n) ·
(

n
Dreg−1

)2
bit operations, where p(n) is a polynomial in n [20].

Such complexity implies that with the hardware available nowadays, a pure algebraic approach
will not outperform exhaustive search when n < 200 [20].

FXL [58] and BooleanSolve [12] are algorithms that combine the algebraic approach with
exhaustive search whose basic idea is to prune branches of the search tree with Macaulay matrices.
Given anMQ system F = {f1, f2, . . . , fm} in n variables x1, x2, . . . , xn, both algorithms only keeps
k variables x1, x2, . . . xk by first fixing n − k variables in order to reduce the degree of regularity
to Dreg as mentioned in Section 3.1.2.

After fixing variables, FXL continues with the same steps as the XL algorithm introduced in
Section 3.1.2. On the other hand, BooleanSolve computes the Macaulay matrix of the witness
degree Dwit, which is an upperbound of Dreg and can be calculated based on n,m, k [12], based
on the base system F ′

F ′ = {f̃1f̃2, . . . , f̃m, x1(x1 − 1), x2(x2 − 1), . . . , xk(xk − 1)}

where f̃i, 1 ≤ i ≤ m is the polynomial obtained by fixing those n− k variables in fi while the rest
of the polynomials are deliberately introduced for the next step. After obtaining the Macaulay
matrix, BooleanSolve proceeds to test the existence of the polynomials h1, h2, . . . , hm+1, . . . , hm+k

that satisfy the equation

h1f̃1 + h2f̃2 + · · ·+ hmf̃m + hm+1x1(x1 − 1) + · · ·+ hm+kxk(xk − 1) = 1

with a Las Vegas variant of Wiedemann’s algorithm [37]. Clearly, since the deliberately introduced
polynomials xi(xi−1), 1 ≤ i ≤ k always evaluate to zero, the existence of hi, 1 ≤ i ≤ m+k implies
the solution set for the original MQ system F is empty. If this is the case, BooleanSolve chooses
another set of values for n − k variables and repeats from the beginning, otherwise exhaustive
search is applied to compute the solution for the remaining k variables after which the algorithm
terminates.

Both FXL and BooleanSolve achieve better asymptotic performance (O(20.785n) andO(20.792n),
respectively) than Fast Exhaustive Search (see Section 3.1.3) under the assumption that n = m
and the systems obtained from fixing variables behave like random systems (i.e. remain semi-
regular [11]). By fixing n − k variables before computing a Macaulay matrix, both the degree of
regularity and the number of variables decrease which in turn reduces the memory requirement.
Nevertheless, working with Macaulay matrices is still the most time-consuming and memory in-
tensive step for both algorithms, which on average has to be done 1

2 · 2
n−k times. Therefore, it is

the main focus of optimization for the algorithm introduced in Section 3.1.5.
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3.1.5 Crossbred

As mentioned in Section 3.1.4, the most computation intensive step of the BooleanSolve algorithm
is testing the solvability of Macaulay matrices with a variant of Wiedemann’s algorithm. To
avoid this costly step, the Crossbred algorithm has been proposed [40], whose basic idea is to
fix variables after computing Macaulay matrices. Given an MQ system F of m equation in n
variables, a degree-D Macaulay matrix with respect to a monomial order can first be computed
based on F . Thereafter the Macaulay matrix is reduced to its row echelon form, whose last
rows might represent equations where n− k variables have been eliminated. These equations can
then be extracted as a sub-system in k variables, which can be solved with exhaustive search or
with Gaussian elimination if the sub-system happens to be linear. Nevertheless, as mentioned in
Section 3.1.4, to obtain a linear sub-system in n variables, the degree D of the Macaulay matrix
must be no smaller than the degree of regularity Dreg of theMQ system F . On the other hand, to
eliminate a significant number of variables in the sub-system, D might grow too large so working
with the resulting Macaulay matrix becomes impractical as well [40].

The key observation of the Crossbred algorithm is that it is not necessary to completely elim-
inate n − k variables in the extracted sub-system. Instead, one simply needs to eliminate the
monomials that do not become constant or linear in the remaining k variables after fixing these
n − k variables, which is referred to as being non-linear for these k variables (non-lineark). For
example, by fixing the last two variables x3 and x4, the sub-system

S =


x1x4 + x2x3 + x1 + x3 + x4 = 0

x1x3 + x3x4 + x2 + 1 = 0

x2x3 + x2x4 + x3x4 + x1 + x4 = 0

becomes a linear system in x1 and x2 since S consists of only monomials that become linear after
fixing variables (to-be-lineark). Clearly, the resulting linear system can be directly solved with
Gaussian elimination, with which solutions to the system can be derived efficiently.

For a monomial xα = xα1
1 xα2

2 . . . xαk

k x
αk+1

k+1 . . . xαn
n , the total degree of the first k variables is

denoted as degkx
α =

∑k
i=1 αi. The Crossbred algorithm first computes a degree-D Macaulay

matrix with respect to a monomial order >degkwhere monomials are sorted according to degk in
descending order. Subsequently the algorithm extracts at least k equations where the monomials
of degk larger than one (non-lineark) are eliminated and only keeps monomials of degk ≤ 1
(to-be-lineark) to construct a sub-system that can be transformed into a linear system in the first
k variables by fixing the remaining n − k variables. After one such sub-system S is obtained,
Crossbred performs exhaustive search by fixing the last n−k variables and testing whether or not
the resulting linear system S ′ is solvable. If so, solutions to S ′ are checked with the original MQ
system F . The algorithm then terminates if a solution is found, otherwise it fixes n− k variables
in S with another set of values and continues the exhaustive search procedure.

To obtain a linear system S ′ from the extracted sub-system S, the Crossbred algorithm uses
the FastEvaluate recursive algorithm (see Algorithm 2) to fix n − k variables in S, whose basic
idea is to split each polynomial into two groups of monomials. An arbitrary polynomial p can be
written as p = p0 + xip1, where xip1 are monomials that involve a specific variable xi while p0
are monomials that do not. It is clear from this form that p0 is exactly the result of fixing xi = 0
in p while p0 + p1 is the result of fixing xi = 1 in p. This idea can be applied recursively to fix
n−k variables. FastEvaluate however requires exponential storage for parallelization. In addition,
the recursive tree is very unlikely to be balanced as there are at most

∑D
i=1

(
n−1
i−1
)

monomials that

involve xi while there are
∑D
i=0

(
n
i

)
monomials in total, therefore the maximal storage requirement

of a tree node decreases only polynomially. Finally, the recursive nature of FastEvaluate makes it
difficult to apply the algorithm in parallel, hence it is not suitable for the GPU architecture.

Note that one can further fix some variables in the original MQ system before computing
Macaulay matrices, which is referred to as external hybridation by the authors [40]. Nevertheless,
since the coined terminology might contain a typo as hybridation is not an English word, this
thesis refers to the technique as MQ preprocessing. Also note that the authors of the Crossbred
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algorithm consider MQ preprocessing merely as a method to distribute the workload between
computers and do not expect it to be asymptotically useful [40].

Algorithm 1 The Original Crossbred Algorithm

1: procedure Crossbred
2: Input:
3: an MQ system of m equations in n variables F = {f1, f2, . . . , fm}
4: Macaulay degree: D
5: number of variables to keep: k
6: number of variables to fix during MQ preprocessing: p
7:

8: for each (xn−p+1, . . . , xn) in {0, 1}p do
9: 1. Fix the last p variables in F according to the tuple to obtain an MQ system F ′.

10: 2. Compute the degree-D Macaulay matrix MackD with respect to a monomial order
11: where monomials are sorted by degk based on F ′.
12: 3. Extract r linearly independent equations S = {s1, s2, . . . , sr} from MackD where
13: monomials of degk > 1 have been eliminated.
14:

15: Call FastEvaluate(S, k, n− p) and
16: for each output linear system S ′ do
17: 4. Test if S ′ is solvable. If so, extract solutions from S ′ and verify them with F .
18: 5. Continue if no solution is found. Otherwise output the solution and terminate.
19: end for
20: end for
21: end procedure

Algorithm 2 Fast Evaluation of Polynomials over F2

1: procedure FastEvaluate
2: Input:
3: a system S = {s1, s2, . . . , sr}
4: number of variables to keep: k
5: number of variables left in the system S: l
6:

7: if l = k then
8: Output S
9: else

10: Separate each si, 1 ≤ i ≤ r into monomials that involve xl and monomials
11: that do not: si = si0 + xlsi1
12:

13: S0 ← {si0 | 1 ≤ i ≤ r}
14: S1 ← {si0 + si1 | 1 ≤ i ≤ r}
15: Call FastEvaluate(S0, k, l − 1)
16: Call FastEvaluate(S1, k, l − 1)
17: end if
18: end procedure

3.2 Parallel Crossbred

Although the main idea of the Crossbred algorithm was explained in [40], some critical details
were left out. In particular, step 3 and 4 of the Crossbred algorithm (see Algorithm 1) were
not specified. In addition, as pointed out in Section 3.1.5, the FastEvaluate algorithm for fixing
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variables in the sub-system is not suitable for parallelization. Therefore this thesis proposes the
Parallel Crossbred algorithm, which is an adaption of the Crossbred algorithm that is highly
parallelizable, and provides the missing critical steps in the original algorithm.

3.2.1 Extracting a Sub-system from the Macaulay Matrix

To extract r linearly independent equations where monomials of degk > 1 are eliminated from
the Macaulay matrix, intuitively one can perform Gaussian elimination on the Macaulay matrix
to extract all equations that meet the criteria at once and choose r from them. Since computing
Macaulay matrices with respect to graded reverse lexicographical order >grlex can be done more
efficiently than computing with respect to the monomial order >degk (defined in Section 3.1.5),
one might be tempted to compute the Macaulay matrix with respect to >grlex first then perform
Gaussian elimination with the columns of the matrix permuted. Note that it is not necessary to
actually permute the columns according to >degk as one can compute the indices of the columns
that must be eliminated and apply Gaussian elimination on these columns directly.

For example, the degree-4 Macaulay matrix of an MQ system of 40 equations in 20 variables
with respect to >grlex can be reduced into its permuted row echelon form as shown in Figure 3.1(a)
and Figure 3.1(b), respectively. The dimension of the original Macaulay matrix is 8440 × 6196.
To keep 12 variables, 4917 out of 6196 monomials are categorized as non-lineark and therefore
need to be eliminated. Since the remaining 1279 to-be-lineark monomials that can be kept are
scattered along the x-axis, one cannot optimize the algorithm by ignoring monomials before a pivot
monomial. In particular, when performing the row reduction step in Gaussian elimination, one has
to specifically perform reduction on the to-be-lineark monomials before the pivot monomial as well
since they might not be zero. This non-consecutive memory access pattern makes näıve Gaussian
elimination on the original Macaulay matrix cache-unfriendly and consequently inefficient.

(a) Original Macaulay Matrix (b) After Gaussian Elimination

Figure 3.1: Gaussian Elimination on the Original Macaulay Matrix

To avoid non-consecutive memory access, one can directly compute the Macaulay matrix with
respect to >degk instead of >grlex as shown in Figure 3.2(a), which can also be achieved by
permuting the columns in the original Macaulay matrix with respect to >degk . However for large
matrices the second approach might incur considerable extra computation cost due to memory
access latency and therefore is not recommended.
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(a) Permuted Macaulay Matrix (b) After Row-swapping

(c) After Gaussian Elimination (d) After Eliminating Pivot Monomials

Figure 3.2: Gaussian Elimination on the Permuted and Row-swapped Macaulay Matrix

Nevertheless, even with the permuted Macaulay matrix, applying Gaussian elimination directly
is still far from being optimal since a Macaulay matrix exhibits a special structure that can be taken
advantage of. As shown in Figure 3.2(a), the leading monomial of each row in a Macaulay matrix
can be computed based on the polynomial f and the multiplier t for that row (see Section 2.1.11),
which determines the point where all monomials ahead must be zero. A Macaulay matrix therefore
has a skew diagonal line below which coefficients are guaranteed to be zero. Hence, one can
perform row-swapping on the permuted Macaulay matrix before applying Gaussian elimination,
which searches for rows that have only zero coefficients before a desired pivot monomial and swap
them into their final position after Gaussian elimination. As shown in Figure 3.2(b), by exploiting
the special structure of a Macaulay matrix, most of the pivot monomials along the diagonal line can
be found. Therefore, the majority of the rows will be in their final position even before Gaussian
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elimination begins. Consequently, during Gaussian elimination there is no need to search for the
pivot rows for pivot monomials that are present nor perform row reduction on the rows that are
in their final position, both of which reduce memory access considerably.

Another optimization technique is to ignore the lower part of the Macaulay matrix during
Gaussian elimination. Since it is sufficient to extract r linearly independent equations from the
Macaulay matrix, there is no need to perform Gaussian elimination on the whole Macaulay matrix.
After row-swapping, one can further swap a·r (a ≥ 1) random rows below the last pivot row rowlast

to the a · r consecutive rows immediately below rowlast. For example, in the aforementioned
example there are 4917 non-lineark monomials to eliminate therefore after Gaussian elimination
the first 4917 rows will contain at least one pivot monomial which is non-lineark if the matrix
is not singular. To extract 32 independent equations, one can randomly choose 64 (a = 2) rows
below the 4917th row as the sub-system candidates and swap them into the 4918th ∼ 4981st rows.
Clearly, the parameter a can be adjusted based on the probability of obtaining linearly dependent
equations. Thereafter Gaussian elimination can be applied simply on those 4917 pivot rows and
64 sub-system candidates, as shown in Figure 3.2(c).

In addition to row-swapping and ignoring the lower part of the Macaulay matrix, more optim-
ization techniques can be applied. In particular, since the majority of the pivot monomials along
the diagonal line will be present after row-swapping, one can reduce the dimension of the matrix to
process for Gaussian elimination by first applying Gauss-Jordan elimination based on the available
pivot monomials. In other words, for each pivot monomial that is found during row-swapping,
row reduction is applied to rows above and below the corresponding pivot row to eliminate that
specific pivot monomial from the matrix (see Figure 3.2(d)). Thereafter, a reduced Macaulay
matrix where each row consists of only pivot monomials that are still missing and to-be-lineark
monomials can be extracted, as shown in Figure 3.3(a).

(a) Initial Reduced Macaulay Matrix (b) After Gaussian Elimination

Figure 3.3: Gaussian Elimination on the Reduced Macaulay Matrix

As a rule of thumb, in order to increase the probability of finding rows with the desired property
during row-swapping, Gauss-Jordan elimination can be applied to theMQ system based on which
the Macaulay matrix is computed. In this manner, more leading monomials of adjacent rows in
the permuted Macaulay matrix are off by one (see Figure 3.4) which reduces the number of missing
pivot monomials after row-swapping.

To sum up, by permuting the columns either before or after computing the Macaulay matrix,
non-consecutive memory access can be avoided. With row-swapping, the majority of the pivot
rows are placed in their final position therefore there is no need to perform row reduction on them.
In addition, by ignoring the lower part of the Macaulay matrix, the number of rows to process
may drop substantially. Finally, by performing Gauss-Jordan elimination with pivot monomials
that are present after row-swapping, both the number of rows and columns can be considerably
reduced. Gaussian elimination only needs to be applied on the reduced Macaulay matrix, as shown
in Figure 3.3(b).

Note that sparse linear algebra, e.g. block Lanczos algorithm [46] and block Wiedemann
algorithm [23], can also be used to extract a sub-system from the Macaulay matrix and might
achieve better performance.
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(a) Without Gauss-Jordan Elimination (b) With Gauss-Jordan Elimination

Figure 3.4: Effect of Applying Gauss-Jordan Elimination on the Initial MQ System

Algorithm 3 Reduce the Dimension of a Macaulay Matrix over F2

1: procedure ReduceMacDim
2: Input:
3: a degree-D Macaulay matrix M
4: number of variables to keep: k
5: number of variables in M: n
6: number of equations to keep as the sub-system candidates: a · r
7:

8: Initialize:
9: M′ ← Permute the matrix M according to the monomial order >degk

10: N ← the number of non-lineark monomials
11:

12: for i = 1 to N do . Row-swapping
13: ri ← Starting from the top, find a row in M′
14: which has exactly i− 1 zeros followed by a one as the leading coefficients
15: if a row is found and stored in ri then
16: Swap ri with the ith row in M′ and mark the ith row as final
17: end if
18: end for
19:

20: for i = 1 to a · r do . Ignore the lower part
21: ri ← Pick a random row below the N th row in M′
22: Swap ri with the (N + i)th row in M′
23: end for
24: . Reduce the dimension
25: for each pivot monomial that are already in place after row-swapping do
26: rpiv ← the row corresponding to the pivot monomial
27: j ← the index of the pivot monomial, starting from 1
28: for i = 1 to (N + a · r) do
29: ri ← the ith row in M′
30: if ri is not marked as final and the jth monomial in ri is 1 then
31: Perform row reduction on ri with rpiv
32: end if
33: end for
34: end for
35:

36: RM← Extract the rows that are not marked as final from the first N + a · r rows of M′
37: and drop the pivot monomials that are in place after row-swapping therein
38: to create the reduced Macaulay matrix
39: Output RM
40: end procedure
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3.2.2 Testing the Solvability of a Linear System

A trivial approach for testing the solvability of a linear system is to simply solve it with Gauss-
Jordan elimination. However, since acquiring a solution to the system is neither necessary nor
possible unless the system is solvable, some optimization techniques can be applied. This thesis
proposes a variant of the Gauss-Jordan elimination algorithm that can test the solvability of a
linear system S of m equations in k variables and subsequently extract a solution if possible in
O(k2) and O(k) machine instructions respectively, under the condition that m is no larger than
the size of a machine word, which for example is 64 for 64-bit architectures.

In the original Gauss-Jordan elimination algorithm, once a pivot row for the ith pivot element
is located, it is moved to its final position by swapping with the ith row. For example, when
solving the linear system

S =



x1 x2 x3 x4 1

eq1 1 1 1 1 1

eq2 0 0 0 1 0

eq3 1 0 0 1 1

eq4 1 0 1 1 0

eq5 0 1 0 1 1


1st pivot element−−−−−−−−−−−−→

no swapping


eq1 1 1 1 1 1

eq2 0 0 0 1 0

eq3 1 0 0 1 1

eq4 1 0 1 1 0

eq5 0 1 0 1 1


reduce with−−−−−−−−→
eq3, eq4


eq1 1 1 1 1 1

eq2 0 0 0 1 0

eq3 0 1 1 0 0

eq4 0 1 0 0 1

eq5 0 1 0 1 1



2nd pivot element−−−−−−−−−−−−→
swap eq2 and eq3


eq1 1 1 1 1 1

eq3 0 1 1 0 0

eq2 0 0 0 1 0

eq4 0 1 0 0 1

eq5 0 1 0 1 1


reduce with−−−−−−−−−→

eq1, eq4, eq5


eq1 1 0 0 1 1

eq3 0 1 1 0 0

eq2 0 0 0 1 0

eq4 0 0 1 0 1

eq5 0 0 1 1 1



3rd pivot element−−−−−−−−−−−−→
swap eq2 and eq4


eq1 1 0 0 1 1

eq3 0 1 1 0 0

eq4 0 0 1 0 1

eq2 0 0 0 1 0

eq5 0 0 1 1 1


reduce with−−−−−−−−→
eq3, eq5


eq1 1 0 0 1 1

eq3 0 1 0 0 1

eq4 0 0 1 0 1

eq2 0 0 0 1 0

eq5 0 0 0 1 0



4th pivot element−−−−−−−−−−−−→
no swapping


eq1 1 0 0 1 1

eq3 0 1 0 0 1

eq4 0 0 1 0 1

eq2 0 0 0 1 0

eq5 0 0 0 1 0


reduce with−−−−−−−−→
eq1, eq5


eq1 1 0 0 0 1

eq3 0 1 0 0 1

eq4 0 0 1 0 1

eq2 0 0 0 1 0

eq5 0 0 0 0 0


in total four rows have to be swapped. However, row swapping can be completely avoided by
maintaining a mask that tracks which rows are in their final position.



mask

1 1 1 1 1 1

1 0 0 0 1 0

1 1 0 0 1 1

1 1 0 1 1 0

1 0 1 0 1 1


1st pivot row: eq1−−−−−−−−−−−−−−→

reduce with eq3, eq4


0 1 1 1 1 1

1 0 0 0 1 0

1 0 1 1 0 0

1 0 1 0 0 1

1 0 1 0 1 1


2nd pivot row: eq3−−−−−−−−−−−−−−−−−−→

reduce with eq1, eq4, eq5


0 1 0 0 1 1

1 0 0 0 1 0

0 0 1 1 0 0

1 0 0 1 0 1

1 0 0 1 1 1



3rd pivot row: eq4−−−−−−−−−−−−−−→
reduce with eq3, eq5


0 1 0 0 1 1

1 0 0 0 1 0

0 0 1 0 0 1

0 0 0 1 0 1

1 0 0 0 1 0


4th pivot row: eq2−−−−−−−−−−−−−−→

reduce with eq1, eq5


0 1 0 0 0 1

0 0 0 0 1 0

0 0 1 0 0 1

0 0 0 1 0 1

1 0 0 0 0 0


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After as many rows as the number of variables k in the linear system S have been marked as
final, the algorithms stops. The remaining unmarked rows are redundant equations and their first
k coefficients which represent the variables x1, x2, . . . , xk are guaranteed to be zero. Therefore,
testing the solvability of S is as simple as checking if the constant term of any of the redundant
equations is non-zero, which lies on the last column.

Algorithm 4 Test the Solvability of a Linear System over F2

1: procedure TestSolvable
2: Input:
3: a linear system S = {c1, c2, . . . , ck+1} stored in column-wise format. In other words,
4: the ith term of the jth equation in S is stored as the jth bit in ci.
5: number of variables in S: k
6:

7: Initialize:
8: mask← all 1’s
9:

10: for i = 1 to k do
11: c′i = ci & mask . Bitwise AND instruction
12: if c′i is all 0’s then
13: continue . Missing pivot element
14: end if
15: x← count trailing zero(c′i) . Commonly supported by the hardware as an instruction
16: xor mask ← Flip the (x+ 1)th bit in c′i . At most two instructions
17:

18: for j = i to k + 1 do
19: if the (x+ 1)th bit of cj is 1 then
20: cj ← cj ⊕ xor mask . Bitwise XOR instruction
21: end if
22: end for
23:

24: mask ← Flip the (x+ 1)th bit in mask
25: end for
26:

27: if ck+1 & mask is all 0’s then
28: Output true . The system can be determined or underdetermined
29: else
30: Output false
31: end if
32: end procedure

Clearly, if the system is solvable, a solution can be extracted from the last column based on
the first k columns. In particular, the position of 1 in the ith column points to the value for xi in
the last column. For example, since 1 is the first element in the first column, the value for x1 is
therefore the first element in the last column. In the manner, the solution for the linear system
above can be extracted as (x1, x2, x3, x4) = (1, 1, 1, 0).

Note that before extracting a solution one has to test whether or not the system is underde-
termined. To achieve this, one can simply verify that none of the first k columns is completely
zero since one such column implies a missing pivot element. Obviously this verification can be
done simultaneously while extracting a solution therefore it requires no extra computation.
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Algorithm 5 Extract a Solution from a Linear System over F2

1: procedure ExtractSolution
2: Input:
3: a linear system S = {c1, c2, . . . , ck+1} that has been processed by TestSolvable
4: number of variables in S: k
5:

6: for i = 1 to k do
7: if ci is all 0’s then
8: abort . The system is underdetermined
9: else

10: j ← count trailing zero(ci)
11: Output xi = the (j + 1)th bit of ck+1

12: end if
13: end for
14: end procedure

3.2.3 Fixing Variables in the Sub-system during Exhaustive Search

As pointed out in Section 3.1.5, the FastEvaluate algorithm used by the original Crossbred al-
gorithm to fix variables in an extracted sub-system is not suitable for parallelization. For a
sub-system S of m degree-D equations in n variables, this thesis proposes to use the Gray code
enumeration algorithm (see Section 2.1.12) to fix n − k variables in S, which requires O(D · k)
machine instructions under the condition that m is no larger than the size of a machine word
(same as the condition for Algorithm 4).

Gray code enumeration was first proposed by the authors of the Fast Exhaustive Search al-
gorithm (see Section 3.1.3) to efficiently evaluate a function f(x1, x2, . . . , xn) whose output is a
constant over F2. To obtain the result of evaluating f on the next point ~a from the current result
f(~a′) where only the ith coordinates of ~a and ~a′ differ, O(1) machine instructions are executed

[20] to combine f(~a′) with the result of evaluating the first order partial derivative ∂f
∂xi

on ~a′. In
particular,

f(~a) = f(~a′) +
∂f

∂xi
(~a′).

This technique can be applied recursively to evaluate ∂f
∂xi

(~a′) and its higher order partial derivatives

until the partial derivative reduces to a constant. Therefore, if f is of degree D, O(D) machine
instructions are required to compute f(~a). Nevertheless, the same technique can also be applied to
evaluate a function f whose output is a linear function instead of a constant over F2. For example,
given a function f(x4, x5, x6, x7) of degree 4 whose output is a linear function in x1, x2, x3

f = x1x4x5x6 + x1x4x5x7 + x4x5x6x7 + x1x4x5 + x2x4x6 + x4x6x7+

x1x4 + x1x5 + x5x7 + x6x7 + x1 + x2 + x4 + 1

as well as some of its higher order partial derivatives

∂f

∂x4
= x1x5x6 + x1x5x7 + x5x6x7 + x1x5 + x2x6 + x6x7 + x1 + 1

∂2f

∂x4∂x7
= x1x5 + x5x6 + x6

∂3f

∂x4∂x6∂x7
= x5 + 1
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the result of evaluating f at the point (0, 0, 0, 0) can be computed with Gray code enumeration as

f(0, 0, 0, 0) = f(1, 0, 0, 0) +
∂f

∂x4
(1, 0, 0, 0)

= f(1, 0, 0, 0) +
∂f

∂x4
(1, 0, 0, 1) +

∂2f

∂x4∂x7
(1, 0, 0, 1)

= f(1, 0, 0, 0) +
∂f

∂x4
(1, 0, 0, 1) +

∂2f

∂x4∂x7
(1, 0, 1, 1) +

∂3f

∂x4∂x6∂x7
(1, 0, 1, 1)

= f(1, 0, 0, 0) +
∂f

∂x4
(1, 0, 0, 1) +

∂2f

∂x4∂x7
(1, 0, 1, 1) +

∂3f

∂x4∂x6∂x7
(1, 0, 1, 0) +

∂4f

∂x4∂x6∂x7∂x7

= f(1, 0, 0, 0) +
∂f

∂x4
(1, 0, 0, 1) +

∂2f

∂x4∂x7
(1, 0, 1, 1) +

∂3f

∂x4∂x6∂x7
(1, 0, 1, 0) + 0

= f(1, 0, 0, 0) +
∂f

∂x4
(1, 0, 0, 1) +

∂2f

∂x4∂x7
(1, 0, 1, 1) + 1

= f(1, 0, 0, 0) +
∂f

∂x4
(1, 0, 0, 1) + 1 + 1

= f(1, 0, 0, 0) + x1 + 1 + 1 + 1

= x2 + x1 + 1 + 1 + 1

= x1 + x2 + 1

because the 4-bit Gray code encoding changes in the following manner (see Table 2.1)

1010→ 1011→ 1001→ 1000→ 0000.

Note that the index of the bit that differs between the current and the next Gray code encodings
is exactly the index of the last bit set to 1 in the binary representation of the value represented by
the latter encoding. For example, when changing from gcur = 0010 to gnext = 0110 (see Table 2.1),
the binary representation of the decimal value represented by gnext is 0100, whose last bit set to
1 has the same index as the bit that flips between two Gray code encodings.

Clearly, since the result of evaluating f or any of its partial derivatives on a point ~a in F4
2 is

a linear function that can be represented by four F2 elements (three variables and the constant
term) and the last order partial derivatives reduce to constants, evaluating f(~a) takes at most
3 · (3 + 1) + 1 xor instructions and another 4 · 2 instructions for computing the indices of the
coordinates that changed during enumeration. In general, for a function f of degree D whose
output is a linear function in k variables, evaluating f requires O(D · k) machine instructions.

To correctly enumerate with Gray Code encodings, during initialization the function f and its
partial derivatives must be evaluated at certain initial points. The proof as well as the pseudocode
for the recursive initialization procedure was given in the paper that first proposed the algorithm
[20]. This thesis omits the proof however provides an iterative version of the initialization proced-
ure (see Algorithm 7).

Since a machine instruction operates on machine words, which for example have size 64 for 64-
bit architectures, multiple functions can be evaluated with Gray code enumeration simultaneously.
Therefore, the algorithm described above can be applied to fix n − k variables in an extracted
sub-system S of m equations in n variables, as long as m is no larger than the machine word size.

Nevertheless, to fix n − k variables in S with all (n − k)-tuples in {0, 1}n−k, the sub-system
must be evaluated 2n−k times. Since Gray code enumeration is highly parallelizable, one method
for reducing the size of the search space is to divide the search space into N smaller subspaces of

size 2n−k

N and launch N threads to perform enumeration. In this manner, each thread evaluates
the same sub-system with a different starting point. However, an alternative approach is to first
fix t variables in the sub-system S with all t-tuples in {0, 1}t to create 2t smaller sub-systems in
n− t variables. With this alternative approach, the starting point of each thread can be the same,
and although the sub-systems are distinct from each other, their last order partial derivatives with
respect to the n− t− k variables that must be fixed remain identical. These two properties of the
alternative approach may be desirable in certain situation, e.g. when implementing the algorithm
on the GPU architecture (see Section 4.2).
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Algorithm 6 Gray Code Enumeration for Linear Systems

1: procedure GrayCodeUpdate
2: Input:
3: the result of evaluating a degree-D function f(xk+1, xk+2, . . . , xn) on the
4: current point whose output is a linear function in x1, x2, . . . , xk that is
5: represented by k + 1 bits: (r1, r2, . . . , rk, rc)
6: coordinates of the next point, which is represented by an integer whose last bit is
7: the last coordinate xn and so on: c
8: the results of evaluating the degree i partial derivatives of f , 1 ≤ i ≤ D
9: at previous points, which use the same representation as (r1, r2, . . . , rk, rc): eval

10:

11: idx1 ← count trailing zero(c) . Compute the indices of the coordinates that changed
12: tmp← Flip the bit at index idx1 in c
13: for i = 2 to D do
14: idxi ← count trailing zero(tmp)
15:

16: if idxi is valid then . May not be valid as c may not have D bits set to 1
17: tmp← Flip the bit at index idxi in tmp
18: end if
19: end for
20:

21: for i = D to 2 do . Update the evaluation of partial derivatives
22: if idxi is valid then

23: . Evaluation of ∂i−1f
∂x(n−idxi−1)∂x(n−idxi−2)···∂x(n−idx1)

24: (b1, b2, . . . , bk, bc)← eval[idxi−1, idxi−2, . . . , idx1]

25: . Evaluation of ∂if
∂x(n−idxi)

∂x(n−idxi−1)···∂x(n−idx1)

26: (b′1, b
′
2, . . . , b

′
k, b
′
c)← eval[idxi, idxi−1, idxi−2, . . . , idx1]

27:

28: for j = 1 to k do
29: bj ← bj ⊕ b′j
30: end for
31: bc ← bc ⊕ b′c
32:

33: eval[idxi−1, idxi−2, . . . , idx1] ← (b1, b2, . . . , bk, bc)
34: end if
35: end for
36:

37: (b1, b2, . . . , bk, bc)← eval[idx1] . Evaluate f on the next point
38: for j = 1 to k do
39: rj ← rj ⊕ bj
40: end for
41: rc ← rc ⊕ bc
42:

43: Output (r1, r2, . . . , rk, rc)
44: end procedure
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Algorithm 7 Iterative Initialization of Data Structures for Gray Code Enumeration

1: procedure GrayCodeInit
2: Input:
3: a degree-D function f(xk+1, xk+2, . . . , xn) whose output is a linear function
4: in x1, x2, . . . , xk
5: container for results of evaluating the degree-i partial derivatives of f , 1 ≤ i ≤ D: eval
6:

7: for idx1 = 0 to n− k − 1 do
8: if idx1 = 0 then
9: p1 ← all 0’s, in total n− k digits

10: else
11: p1 ← all 0’s except the bit at index idx1 − 1, e.g. for idx1 = 1, p1 = 00 . . . 01
12: end if
13:

14: eval[idx1]← ∂f
∂x(n−idx1)

(p1)
15:

16: for idx2 = idx1 + 1 to n− k − 1 do
17: if idx2 = idx1 + 1 then
18: p2 ← p1
19: else
20: p2 ← Flip the bit at index idx2 − 1 of p1
21: end if
22:

23: eval[idx2, idx1]← ∂2f
∂x(n−idx1)∂x(n−idx2)

(p2)
24:

25:
. . . . D − 3 level of loops, where one is wrapped by its previous level

26:

27: for idxD = idxD−1 + 1 to n− k − 1 do . Reduce to constant

28: eval[idxD, . . . , idx2, idx1]← ∂Df
∂x(n−idx1)∂x(n−idx2)···∂x(n−idxD)

29: end for

30:
...

31:

32: end for
33: end for
34: end procedure
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Algorithm 8 Perform Gray Code Enumeration in Parallel

1: procedure ParallelGrayCodeEnumerate
2: Input:
3: an extracted sub-system of m degree-D equations in n variables x1, x2, . . . , xn
4: which can be turned into a linear system in x1, x2, . . . , xk by fixing the
5: rest of the n− k variables: S = {f1, f2, . . . , fm}
6: number of threads to launch: 2t

7:

8: for each vi = (xn−t+1, . . . , xn) in {0, 1}t do . Initialize data structure for enumeration
9: Si ← Fix S according to vi to obtain {f ′i1, f ′i2, . . . , f ′im}

10:

11: . Can be done simultaneously by packing m bits into a machine word
12: for j = 1 to m do
13: . evali[j] is the result of evaluating the partial derivatives of f ′ij (see Algorithm 6)
14: Call GrayCodeInit(f ′ij , evali[j])
15: end for
16: end for
17:

18: for i = 1 to 2t do . Execute the loop body in parallel
19: c← 0
20: R ← Evaluate Si with (xk+1, xk+2, . . . , xn−t) = (0, 0, . . . , 0)
21: and store the result in column-wise format as described in Algorithm 4
22:

23: while c < 2n−k−t do
24: R′ ← R . Make a copy because TestSolvable will modify R
25: solvable ← TestSolvable (R′, k)
26: if solvable = true then
27: solution← Call ExtractSolution (R′, k) and collect the values for x1, x2, . . . , xk
28: Output solution
29: end if
30:

31: c← c+ 1
32: . Can be done simultaneously by packing m bits into a machine word
33: for j = 1 to m do
34: (r1, r2, . . . , rk, rc)← Extract the evaluation of f ′ij at the current point from R
35: . This extraction is only for explaining the algorithm
36: . In practice there is no need to do so
37: Call GrayCodeUpdate((r1, r2, . . . , rk, rc), c, evali[j])
38: end for
39: end while
40: end for
41: end procedure

3.2.4 Fixing Variables in the Sub-system before Exhaustive Search

In addition to fixing variables in the initial MQ system as described in the original Crossbred
algorithm (see Section 3.1.5), one can further fix some variables in the extracted sub-system before
entering the exhaustive search stage. This might be necessary as the hardware might not have
enough resources, e.g. memory and registers, for performing exhaustive search on the sub-system.
By fixing b variables the sub-system beforehand, one can divide the workload evenly into 2b smaller
sub-systems which require less resources for applying exhaustive search. Clearly, since the main
purpose of fixing these b variables in the sub-system is to fine-tune the resource requirement, the
choice of b should be adjusted based on the hardware.
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To summarize, the proposed Parallel Crossbred algorithm first applies MQ preprocessing to fix
p variables in the initial MQ system F , which divides the workload into 2p smaller MQ systems
F1,F2, . . . ,F2p . Then based on each MQ system Fi and the number of variables to keep in
the final linear system k, the degree-D Macaulay matrix MackD(Fi) is computed. Thereafter, the
ReduceMacDim algorithm for reducing the dimension of MackD(Fi) (see Algorithm 3) is applied to
compute the reduced Macaulay matrix, from which a sub-system S can be extract with Gaussian
elimination. Based on the parameter b, which is adjusted according to the amount of resources
that the hardware can provide, the Parallel Crossbred algorithm fixes f variables in the extracted
sub-system S to split the workload into 2b smaller sub-systems S1,S2, . . . ,S2b . Subsequently
for each smaller sub-system Sj , the ParallelGrayCodeEnumerate algorithm (see Algorithm 8) is
applied to extract solution candidates, which are then verified with the initial MQ system.

Algorithm 9 The Adapted Crossbred Algorithm

1: procedure ParallelCrossbred
2: Input:
3: an MQ system of m equations in n variables F = {f1, f2, . . . , fm}
4: Macaulay degree: D
5: number of variables to keep: k
6: number of variables to fix during MQ preprocessing: p
7: number of variables to fix before entering exhaustive search stage: b
8: number of variables to keep as the sub-system candidates: a · r
9: number of threads to launch: 2t

10:

11: for each u = (xn−p+1, . . . , xn) in {0, 1}p do
12: 1. Fix the last p variables in F according to u to obtain an MQ system F ′.
13: 2. Compute the degree-D Macaulay matrix MackD based on F ′.
14: 3. Call ReduceMacDim(MackD, k, n− p, a · r) to compute the reduced Macaulay
15: matrix RM.
16: 4. Apply Gaussian elimination on RM to extract a system SC of
17: a · r sub-system candidates.
18: 5. Extract r linearly independent equations from SC to create the sub-system S.
19:

20: for each t = (xn−p−b+1, . . . , xn−p) in {0, 1}b do
21: 6. Fix the last b variables in S according to t to obtain a smaller sub-system S ′.
22:

23: Call ParallelGrayCodeEnumerate(S ′, 2t) and
24: for each output solution candidate s = (x1, x2, . . . , xn−p−b) in {0, 1}n−p−b do
25: 7. Combine s with t and u then verify it with F . Output the solution
26: and subsequently terminate if it is correct, otherwise continue.
27: end for
28: end for
29: end for
30: end procedure
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Chapter 4

Implementation

To test the performance of the proposed algorithm (see Section 3.2), a program called MQsolver
is implemented in pure C language, i.e. not C++. This chapter documents the design choices and
implementation details of MQsolver as well as the result of profiling the implementation.

4.1 Extracting a Sub-system from the Macaulay Matrix

To compute the reduced Macaulay matrix RM, Algorithm 3 is implemented on the CPU ar-
chitecture because RM might be too large for the off-chip memory of a GPU. Sparse matrix
representation where each row only stores the indices of the non-zero columns is used for the ini-
tial Macaulay matrix because of its high sparsity. On the other hand, dense matrix representation
is used for the reduced Macaulay matrix as it can be quite dense both before and after applying
Gaussian elimination (see Figure 3.3).

After RM is computed, it can be copied to the GPU if the off-chip memory can accommodate
it. Subsequently a sub-system can be extracted with Gaussian elimination on the GPU and copied
back to the system main memory. On the other hand, if the size of RM is too large then Gaussian
elimination is simply performed with the CPU. To speed up the CPU, the implementation is
parallelized with the POSIX Thread API to distribute the workload to all CPU cores. It has been
observed during experiments that the GPU implementation outperforms the CPU version by a
factor of 9 in most cases. Nevertheless, a more thorough analysis is necessary in order to figure
out the exact factor.

Since the size of registers on a GPU is 32 bits, and Algorithm 4 as well as Algorithm 5 requires
the input linear system to be stored in column-wise format, only 2 · 32 sub-system candidates
are extracted from the reduced Macaulay matrix which turned out to be sufficient to provide 32
linearly independent equations for the sub-system.

4.2 Fixing Variables in the Sub-system

Algorithm 8 for fixing n− k variables in the degree-D sub-system S to enumerate linear systems
in k variables is implemented on the GPU architecture. The data structures used by Gray code
enumeration are allocated from the off-chip global memory. However, as noted in Section 3.2.3,
the last partial derivatives are constants and remain the same for these 2t smaller sub-systems
Si, 1 ≤ i ≤ 2t obtained by fixing t variables in S so they can be stored in the read-only constant
memory (see Section 2.2.2). The GPU threads in a warp begin enumeration with the same starting
point and consequently they will access partial derivatives with respect to the same variables in
each iteration. In this manner, only one load-instruction is required for the whole warp. In
addition, because of the cyclic nature of Gray code enumeration (see Section 3.1.3), the data
stored in the constant cache can be reused again, which amortizes the cost of the load-instruction.
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Since the last order partial derivatives of Si with respect to a set of variables is stored in column-
wise format as described in Algorithm 4, one single 32-bit integer is sufficient. Therefore, in total(
n−k−t
D

)
32-bit integers are required for the sub-system S.

On the other hand, the result of evaluating non-constant partial derivatives of Si with respect
to a set of variables is a linear system in k variables and is stored as k + 1 32-bit integers. Since
a warp consists of 32 threads, 32 · (k + 1) integers are required for these partial derivatives. As
mentioned above, threads in a warp access partial derivatives with respect to the same set of
variables in each iteration. Hence, to minimize the amount of memory to access and to avoid
non-coalesced memory access (see Section 2.2.2), these 32 · (k + 1) integers in the global memory
are interleaved as shown in Figure 4.1.

thread 1 thread 2 thread 3 thread 4 . . . thread 31 thread 32
↓ ↓ ↓ ↓ ↓ ↓

x1 → . . .
x2 → . . .

...
xk → . . .

the constant term → . . .

Figure 4.1: Interleaved Data Structures for Gray Code Enumeration

Those 32 · (k + 1) interleaved integers form the basic unit of the data structures for Si. Since
n − k − t variables have to be fixed during enumeration, storing results of evaluating the non-
constant partial derivatives of Si requires

∑D−1
j=1

(
n−k−t

j

)
such basic units for a warp. Together with

the result of evaluating Si at the current point, which requires one basic unit as well, a warp requires∑D−1
j=0

(
n−k−t

j

)
basic units. Therefore, in total Algorithm 8 needs (2t−5 ·

∑D−1
j=0

(
n−k−t

j

)
) ·32 ·(k+1)

32-bit integers in global memory and
(
n−k−t
D

)
32-bit integers in the constant memory to operate.

4.3 Testing the Solvability of a Linear System

Algorithm 4 and Algorithm 5 are also implemented on the GPU architecture because they are
sub-routines of Algorithm 8. One caveat of implementing the algorithms is to avoid using an array
of local variables to store the input linear system. Normally, when the size of the array is unknown
during compilation, the NVCC compiler has no choice but to use local memory (see Section 2.2.2)
as the storage for the array. This results in larger memory access latency as the data would then
locate on the off-chip memory.

One seemly plausible method for reducing the access latency is to use shared memory (see
Section 2.2.2) for the linear system. However, in practice since a GPU kernel can utilize at most
48KB of shared memory, it becomes the primary factor that limits the degree of parallelism. For
example, since a linear system in 15 variables is represented by 16 32-bit integers (see Algorithm 4),
a warp requires 2KB shared memory. Therefore, for an SM there can be at most 24 warps in all
the active blocks. The situation becomes even worse for larger linear systems. Consequently using
shared memory to store the linear system is not recommended.

A better approach is to use a macro to represent the size of the array and define the macro at
compilation time. In this manner, a linear system can be stored in registers, which is even faster
than shared memory. It has been observed by the author of this thesis that NVCC bundled with
CUDA version 8.0 is able to optimize away the local memory usage with the help of the macro.
However, with older versions, e.g. CUDA version 7.5, NVCC is less competent and fails to do so.
To work around this issue, one can manually define as many array elements as the size of the array
and unroll the loops used to access those array elements. For this thesis a Python script is used
to achieve this, which takes less than 0.1 second. However, the consequence of generating C code
at compilation is that MQsolver has to be re-compiled whenever the size of the array changes.
Since the size of the array is one plus the number of variables to keep k, another Python script is
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created to generate C code and re-compile MQsolver according to the parameter k automatically.
The compilation takes roughly 6 seconds on a 4GHz CPU with one single thread (AMD FX-8350),
which is negligible.

4.4 Verification of Solution Candidates

When a solution candidate is found during Gray code enumeration, it is reported and subsequently
verified with the originalMQ system, as shown in Algorithm 8 and Algorithm 9. Ideally one would
copy the solution candidate from the GPU off-chip memory back to the main memory and verify
it with the CPU immediately. In practice this is not efficient as copying the solution candidate
interrupts the workflow of the GPU. Therefore, an alternative approach is to store the solution
candidates in a buffer and only copy them back to the main memory after the enumeration finishes.

One caveat of this approach is that a buffer must be allocated on the off-chip memory, which
may have little capacity left after allocating memory blocks for the data structures used in Gray
code enumeration. If the number of solution candidates is larger than the size of the buffer, some
candidates must therefore be dropped. To avoid this pitfall, one can copy some equations from
the originalMQ system to the GPU which serve as a filter. Since an equation is expected to filter
out half of the solution candidates, using e equations would reduce the number of candidates by
a factor of 2e. With these filtering equations the number of solution candidates can be reduced
considerably. Only solution candidates that passed the filter will then be verified with the rest of
the equations in the original MQ system by the CPU.

The number of equations to copy is subject to the implementation. For this thesis 32 equations
are selected and stored in column-wise format for efficiency reasons. In this manner, to apply the

filter one only needs to evaluate these n(n−1)
2 +n+1 monomials in the equations with the solution

candidate, where n is the number of variables in the original MQ system. Therefore, it takes at
most O(n2) machine instructions, whose execution time is observed to be completely hidden by
the execution model of GPUs (see Section 2.2.2) during experiments.

4.5 Pipelining

When MQ preprocessing is applied, i.e fixing p variables in the original MQ system, one has to
extracted a sub-system and subsequently perform Gray code enumeration at most 2p times. Since
Gray code enumeration is executed on the GPU, which operates independently from the CPU, one
can pipeline the two stages. In other words, when performing Gray code enumeration on the GPU,
a sub-system for launching the next Gray code enumeration can be computed simultaneously with
the CPU. In this manner, as long as Gray code enumeration takes more computation time than
extracting a sub-system, which is usually the case for large MQ systems, only the runtime of
extracting the first sub-system will manifest. In MQsolver the pipelining of these two stages is
implemented with POSIX Thread API and will be activated automatically when the CPU is used
for extracting sub-systems.

4.6 Profiling the GPU Kernel

4.6.1 Metrics

In order to evaluate the quality of a GPU kernel implementation, some metrics can be used.

• Occupancy: actual number of active warps
maximal number of active warps

• GPU utilization: actual number of instructions issued
maximal number of instructions that can be issued

The first metric provides a coarse indicator of how well latencies, e.g. memory access latency
and instruction fetch latency, can be hidden by computing the ratio of actual active warps on
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the GPU versus the maximal number of warps that the GPU can accommodate. As explained
in Section 2.2.2, a warp becomes active when the block to which it belongs acquires execution
resources from an SM. Nevertheless, a warp is only executed when a warp scheduler picks the
warp from the pool of active warps and dispatches instructions for it. Clearly, the chance of
having no eligible warps to dispatch instructions for may decrease as the size of the pool grows.
Therefore, occupancy measures how close the actual number of active warps is to the theoretic
maximum, which is computed based on the amount of resources required by a warp and the
amount of them available on the GPU. If occupancy is lower than the theoretic maximal value,
the kernel launch was not properly configured and therefore, some execution resources were not
distributed, which could have been used to accommodate more warps on the GPU.

On the other hand, the second metric shows how the CUDA cores are actually utilized. At each
cycle, a CUDA core is able to execute one instruction. When it fails to do so due to, e.g. memory
access latency, the capacity of the hardware is not fully utilized. GPU utilization is the ratio of
the number of instructions that were executed during the kernel execution versus the maximal
number of instructions that could have been executed.

4.6.2 Result

MQsolver has been profiled with the Nvidia Visual Profiler and the following settings

• GPU: Nvidia Quadro M1000M, 4GB off-chip memory, 4SMs, 512 CUDA cores in total

• CUDA version: 8.0

• Input: an MQ system of 82 equations in 41 variables

• Macaulay degree: D = 3

• Number of variables to keep: k = 15

• Number of GPU threads: 214, i.e. t = 14

• MQ preprocessing: p = 0

• Number of variables to fix before enumeration: b = 0

The result shows that with the resources available on Quadro M1000M, the theoretical max-
imal occupancy is 65.62% while in practice 61.8% is achieved. The factor that decides the maximal
occupancy is the number of registers required for each thread. MQsolver requires 48 register for
a thread when keeping 15 variables in the linear system so a warp requires 1536 registers. Since
each block may use at most 65536 registers, there can be at most 42 active warps at a time.
The maximal occupancy is therefore 42

64 = 65.62% because the maximal number of warps for a
streaming multiprocessor on Quadro M1000M is 64. Note that as mentioned above, occupancy is
simply an estimation of how likely the latencies can be hidden. Therefore, an occupancy of 100%
is not necessarily better than 61.8% as long as the number of active warps is high enough to hide
various latencies (see Section 5.1.1 for an example). As the actual occupancy is very close to the
theoretical maximum, the kernel launch can be considered to be properly configured.

In contrast, MQsolver achieves only 37.06% GPU utilization. Warps were stalled due to

• The warp was eligible but not selected by the warp scheduler: 3.3%

• Instruction fetch latency: 3.6%

• Data dependency: 5.5%

• Memory access latency: 73.7%

• Other: 13.9%
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Therefore in theory, MQsolver can perform 2.13 times faster if the memory access latency is
completely hidden and the data dependency issue is resolved. The latter issue can be achieved by
enforcing instruction-level parallelism (see Section 2.2.1) while the former one can be alleviated by
exploiting the cyclic nature of Gray code enumeration. In particular, as mentioned in Section 3.1.3,
some of the partial derivatives are accessed more frequently during enumeration, therefore one can
explicitly store these partial derivatives in faster memory, e.g. registers and shared memory.
As shown in [20], in theory these partial derivatives will never be evicted under optimal cache
replacement policy hence there would be no need to load or store these partial derivatives back
and forth from the off-chip memory.
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Chapter 5

Experiment and Analysis

In this chaper, proper choices of the parameters for the proposed algorithm are discussed and
subsequently the experimental results of solving overdetermined and determined MQ systems
with MQsolver are presented.

5.1 Choice of Parameters

5.1.1 Number of GPU Threads

As discussed in Section 4.6, occupancy provides a rough estimation of the degree of parallelism and
higher occupancy is not necessarily better as long as a certain threashold value has been achieved.
Therefore, one would expect that the number of threads 2t to launch on a GPU does not have
influence on the performance of MQsolver after this threshold value. To verify this conjecture, a
random solvable MQ system of 92 equations in 46 variables was generated and used as the test
bench. For this series of experiments, MQsolver was launched on a Nvidia Quadro M1000M GPU
(same as the one in Section 4.6) with the following settings

• GPU: Nvidia Quadro M1000M, 4GB off-chip memory, 4SMs, 512 CUDA cores in total

• CUDA version: 8.0

• Macaulay degree: D = 3

• MQ preprocessing: p = 0

• Number of variables to fix before enumeration: b = 0

• Number of variables to keep: k = 16

and the result is given in Table 5.1. As shown in the table, indeed the runtime basically remains
constant for t ≥ 12. On the contrary, for t < 12, the degree of parallelism is not sufficient therefore
the latencies manifest. In particular, when t = 7, there are only 27 = 128 GPU threads deployed
onto the GPU, which has 512 CUDA cores in total. Therefore 75% of the CUDA cores sit idle
while the remaining CUDA cores have to perform all the computation. In this case, there is very
little parallelism thus the performance suffers. As the number of GPU threads increases, the
workload is distributed to more CUDA cores but the degree of parallelism remains insufficient.

When t = 9, there are 29 = 512 GPU threads deployed, which is exactly the number of CUDA
cores available on this particular GPU. In this case the workload is finally distributed to all the
CUDA cores. Nevertheless, the degree of parallelism is still far from enough because executing a
single thread on a CUDA core cannot hide latencies at all. For example, when the thread needs to
load data from the global memory, which requires hundreds of cycles to access, there is no other
thread that can take over the execution resources hence the CUDA core has no choice but to stall.
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Starting from t = 10, the degree of parallelism becomes better which in turn decreases the
amount of latencies that manifest. The performance gradually improves but not exponentially as
when t = 7 ∼ 9. Finally when t = 12, the degree of parallelism reaches a point where deploying
more threads does not improve the ability of the GPU to hide latencies anymore. With those
experimental settings, the threshold is therefore 212, where the optimal performance of MQsolver
based on the current implementation is achieved.

Number of Memory Needed Total Memory Constant Memory Size of Runtime for
Threads per Thread Needed Needed Search Space Exhaustive Search

(KB) (MB) (B) per Thread (second)
27 18.39 2.30 7084 223 81.40
28 16.87 4.22 6160 222 40.98
29 15.41 7.70 5320 221 20.97
210 14.01 14.01 4560 220 11.93
211 12.68 25.37 3876 219 7.16
212 11.42 45.69 3264 218 4.89
213 10.22 81.81 2720 217 5.15
214 9.10 145.56 2240 216 5.15
215 8.04 257.12 1820 215 5.04
216 7.04 450.50 1456 214 4.95
217 6.11 782.00 1144 213 4.94
218 5.25 1343.00 880 212 4.79
219 4.45 2278.00 660 211 4.86
220 3.72 3808.00 480 210 4.86

Table 5.1: Effect of Changing the Number of GPU Threads

Note that as shown in Section 4.2, the amount of global memory required for a GPU thread
reduces slightly when t increases by one but the total amount of memory requirement for the GPU
kernel soars up nearly twofold because the number of GPU threads becomes two times higher. As
for constant memory requirement, it decreases as t increases, as shown in the same section.

5.1.2 Number of Variables to Keep

False Positives and Underdetermined Linear Systems

As mentioned in Section 4.4, once a solution is found on the GPU, it is first checked with the 32
filtering equations before reported to the CPU. The solution candidates that do not pass the filter
become false positives and are subsequently dropped.

In addition to false positives, which are linear systems that yield a unique solution, underde-
termined linear systems might appear during Gray code enumeration because those 32 linearly
independent equations in the sub-system might become dependent after fixing variables. For
example, both of the equations {

x1x2 + x2 + 1 = 0

x1 + x2 + 1 = 0

become x2 + 1 = 0 after fixing x1 = 0. Consequently, when the number of remaining linearly
independent equations drops below the number of variables in the linear system, the system
becomes underdetermined and has multiple solutions.

Clearly, the number of false positives is related to the total number of solutions to the linear
systems that are enumerated. Since the number of equations in the linear system is constant for
MQsolver (which is 32, see Section 4.1), one remaining major factor is the number of variables k in
a linear system. As for underdetermined linear systems, they are obviously related to k. Therefore,
to investigate the effect of changing the parameter k, a solvable MQ system is generated as in
Section 5.1.1 and subsequently tested with the following settings
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• GPU: Nvidia Quadro M1000M, 4GB off-chip memory, 4SMs, 512 CUDA cores in total

• CUDA version: 8.0

• Macaulay degree: D = 3 and 4

• MQ preprocessing: p = 0

• Number of variables to fix before enumeration: b = 0

while the number of variables in a linear system k and the number of GPU threads 2t vary. Clearly
t does not affect the correctness of MQsolver and as shown in Section 5.1.1, as long as a sufficient
degree of parallelism has been achieved, increasing t has no effect. Therefore changing t does not
invalidate the experiments. The experimental results are given in Table 5.2. Note that the ratio
of the missing pivot monomials as described in Section 3.2.1 is listed as the 2nd column.

Parameters Ratio of Initial Sparsity Number of Number of Number of
(D, k) Missing of the Extracted False Underdetermined Solution

Pivots (%) Sub-system Positives Linear Systems Candidates
(4, 18) 30.72 0.50 16518 0 1
(4, 17) 24.88 0.49 16142 0 1
(4, 16) 17.91 0.49 16245 0 1
(4, 15) 9.48 0.49 16371 0 1
(4, 14) 0.86 0.61 3069025 1 1
(4, 13) 0.00 0.90 2227401339 11718508 2
(4, 12) 0.00 0.93 2944024458 19912529 3
(4, 11) 0.00 0.93 4619656 35340419 2
(4, 10) 0.00 0.93 146244062 176238738 4
(4, 9) 0.00 0.96 1854266662 1359835490 48
(3, 16) 20.58 0.50 16334 0 1
(3, 15) 10.90 0.50 16489 0 1
(3, 14) 0.98 0.54 184126 0 1
(3, 13) 0.00 0.66 2396731 1 1
(3, 12) 0.00 0.74 127602703 6952 1
(3, 11) 0.00 0.79 188889712 21777 1
(3, 10) 0.00 0.84 148940573 15286 1
(3, 9) 0.00 0.84 364066881 104953 3

Table 5.2: Effect of Changing the Number of Variables to Keep

As the table shows, the number of false positives remains almost constant as long as the
extracted sub-system behaves like a random system, i.e. has sparsity ≈ 0.5. The experiment
shows that a sub-system may fail to do so when the ratio of the missing pivots drops below a
certain threshold ≈ 1%, in which case the reduced Macaulay matrix is almost the same before and
after applying Gaussian elimination. The number of row reduction operations performed during
Gaussian elimination is therefore very low, which fails to combine the information contained in the
pivot rows with the sub-system candidates that are to be extracted. Consequently, the extracted
sub-system does not behave like a random system. Since the ratio of the missing pivots drops as
the parameter k decreases, as shown in the table, and being able to keep one more variables in
the linear system reduces the number of iterations during Gray code enumeration by a factor of
two (see Algorithm 8), one should choose k as high as possible.

As for underdetermined linear systems, for all the experiments they do not appear when the
sub-system behaves randomly. Therefore, another benefit of choosing k as high as possible is
to reduce the chance of their appearance. Judging from the experimental results, the number of
underdetermined linear systems that appear depends on the equations in the extracted sub-system,
which vary from sub-system to sub-system. The analysis of the number of underdetermined linear
systems is therefore not trivial and requires further investigation.
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False Positive Rate

As shown in Table 5.2, when the extracted sub-system does not behave like a random system, the
number of false positives is irregular and depends on what equations are in the sub-system. It is
therefore not easy to analyze the number of false positives in this case. On the contrary, when
the sub-system does behave semi-regularly, the ratio of false positives seems to be mathematically
predictable. It has been observed in the experiments for this thesis that whenever the maximal
value of k is increased by one, the false positive rate increases roughly twofold. As a rule of thumb,
the following formula can be used to estimate the false positive rate based on the maximum of k

7.55 · 10−6 · 2(kmax−15).

Nevertheless, the exact formula requires a more thorough analysis.

Maximal Number of Variables that Can be Kept

As discussed above, the parameter k should be chosen as high as possible. Therefore, one would
be interested in the maximal value of k. As described in the original Crossbred algorithm [40],
the maximum of k depends on the degree of the Macaulay matrix D as well as the number of
variables n and the number of equations m in the MQ system, In particular, the number of
linearly independent equations that can be extracted from the Macaulay matrix, which can be
computed as the difference of the number of independent rows Nindep row in the Macaulay matrix
and the number of non-lineark monomials Nnl (see Section 3.1.5), must be no less than k. One
can therefore compute the maximal value of k as follows

Nindep row =

{
m · (n+ 1), when D = 3

m · (
(
n
2

)
+ n+ 1)− (

(
m
2

)
+m), when D = 4

Nnl =

D∑
i=2

i∑
j=2

(
k

j

)
·
(
n− k
i− j

)
Nindep row −Nnl ≥ k

With this formula, one can compute the maximal values of k for MQ systems where n = m
and m = 2n, based on Macaulay degree D = 3 and 4 respectively. The results for n = 1 ∼ 200 are
shown in Figure 5.1.

Clearly, with degree-4 Macaulay matrices, one can keep more variables than with degree-3
Macaulay matrices for most of the overdetermined and determined systems. However, for some
determined systems, e.g. n = 140, using a degree-4 Macaulay matrix does not allow one to keep
more variables than using a degree-3 matrix. In addition, one can also observe that the gap
between the two curves for overdetermined systems also becomes narrower as n grows. Therefore,
similar to the degree-3 Macaulay matrices, the effectiveness of degree-4 matrices is expected to
become marginal, at which point degree-5 Macaulay matrices would be necessary if one wishes to
keep considerably more variables than using degree-3 matrices.

Note that k grows linearly in the beginning of each curve, where the degree of regularity (see
Section 3.1.1) of the MQ system is smaller than or equal to the Macaulay degree. In this case,
a Gröbner basis can be extracted directly from the Macaulay matrix, which immediately yields a
solution to the system. Therefore, all the variables can be kept.

5.1.3 Number of Variables to Fix during MQ Preprocessing

In Section 5.1.2 it is shown that one should choose the parameter k as high as possible and
the formula for computing the maximal value of k is also provided. Since the parameter n in
the formula is the number of variables in the MQ system, one might be tempted to fix some p
variables with MQ preprocessing. In this manner, the number of variables in the system drops
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Figure 5.1: Maximal Number of Variables that Can be Kept

by p but the number of equations remains the same. Therefore, the number of variables that can
be kept for this smaller MQ system may be higher. Obviously, this technique is more effective
for an MQ system which has more equations.

Indeed, as shown in Figure 5.2, by fixing four variables, an MQ system of 148 equations in
74 variables becomes a system in 70 variables, with which one can keep one more variable (now
22 variables) by computing a degree-4 Macaulay matrix. In this manner the search space of Gray
code enumeration is split into 24 × 274−4−22 instead of 1 × 274−21, which reduces the number of
iterations for Gray code enumeration by half.

Figure 5.2: Effectiveness of MQ Preprocessing for MQ Systems where m = 2n

Note that in practice, one might have to extract a sub-system and subsequently launch the
GPU kernel for Gray code enumeration at most 2p times. The extra overhead for computing
sub-systems and launching GPU kernels should therefore be taken into consideration. One only
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benefits from MQ preprocessing when the computation time that can be saved is more than the
extra overhead.

Also note that for degree-3 Macaulay matrix, MQ preprocessing can be quite ineffective. As
shown in Figure 5.2, for anMQ system where n = 74,m = 2n, more than 10 variables have to be
fixed in order to increase the maximum of k by one. Therefore this technique is not recommended
for degree-3 Macaulay matrices.

5.1.4 Number of Variables to Fix before Exhaustive Search

As mentioned in Section 3.2.4, the sole purpose of fixing variables before entering the exhaustive
search stage is to reduce the amount of resources required. Therefore, one should decide other
parameters first and adjust this parameter accordingly.

5.1.5 Macaulay Degree

As discussed in the original Crossbred algorithm [40], since the Macaulay matrix is used to induce
cancellation of the monomials where any of the variables x1, x2, . . . , xk has a degree larger than one,
the degree of the Macaulay matrix must be no less than the degree of regularity of a random system
of m equations in k variables. In addition, the Macaulay degree is a key factor that determines the
maximal value of k, as shown in Section 5.1.2. One should therefore choose a Macaulay degree that
is larger than the degree of regularity requirement and can provide sufficient linearly independent
equations for the intended value of k.

One caveat of choosing the Macaulay degree is that the memory requirement must be smaller
than the amount of memory available. Since both the number of rows and columns of a Macaulay
matrix grow considerably when the degree increases, one might have to choose a smaller Macaulay
degree and subsequently a smaller k in case the amount of memory is insufficient.

5.2 Chance of Failure

The proposed algorithm might fail to yield a solution to the input MQ system in two cases

1. When the number of linearly independent equations extracted from the Macaulay matrix is
less than k.

2. When the number of linearly independent equations after fixing variables in the sub-system
becomes less than k.

When the first case occurs, each resulting linear system appeared in Gray code enumeration
would be an underdetermined linear system, which guarantees the occurrence of the second case.
In the current implementation, MQsolver only extracts 64 sub-system candidates from which a
sub-system is subsequently extracted (see Section 4.1). 64 sub-system candidates turned out to
be sufficient since during all the experiments MQsolver did not fail to extract enough equations
for the sub-system. However, for a tighter upperbound of the number of sub-system candidates
needed, a more through analysis is required.

As for the second case, when solving an underdetermined linear system with the algorithms
proposed in Section 3.2.2, only one single solution can be extracted, which might not be the
correct one to the input MQ system. Consequently, Parallel Crossbred might fail to yield a
solution. However, as discussed in Section 5.1.2, as long as the extracted sub-system behaves
like a random system, the chance of obtaining underdetermined linear systems is too small to
be observable. In all the experiments that have been conducted for this thesis where the sub-
system behaved as desired, the second case never happened and MQsolver did not fail to yield a
solution. Note that one method to avoid this potential failure is to check all the solutions to an
underdetermined linear system with, for example, the Fast Exhaustive Search algorithm.

Also note that the original Crossbred algorithm restarts from the beginning should the first
case occurs. As for the second case, the Crossbred algorithm does not mention how to tackle it.
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5.3 Environment

To evaluate the performance of MQsolver, it is deployed onto the Saber clusters [16]. Saber is
located at Technische Universiteit Eindhoven and Saber2 at University of Illinois at Chicago.
Those clusters are mostly homogeneous and consist of hundreds of personal computers. Out of
all the nodes in these two clusters, 27 nodes, each of which has two Nvidia graphics cards, were
chosen for the experiments. 12 out of those 27 nodes have two GTX 780 graphics cards while
the remaining 15 nodes have two GTX 980 cards. Each node has 32GB DDR3 ECC memory at
1600MHz (Kingston KVR16E11K4/32) and one AMD FX-8350 4GHz processor [1], which has 4
physical CPU modules (similar to a physical core in an Intel CPU) shared by 8 logical threads
with Cluster MultiThreading (see Section 2.2.1), 16KB L1 data cache per thread, 2MB L2 cache
per module, and 8MB L3 cache shared by the whole CPU. All nodes in the clusters have CUDA
version 7.5 installed except for one, which has version 8.0. MQsolver is compiled with the back-end
compiler bundled with CUDA, which is GCC version 4.8 for CUDA 7.5 and GCC version 5.3 for
the newer version.

5.4 Fukuoka MQ Challenge

Fukuoka MQ challenges [60] are used as the test benches. They were created in 2015 in order
to help determine appropriate parameters for public key cryptographic schemes based on MQ
systems. In particular, type I challenges generated with seed 4 were chosen because they consist
of MQ systems of m equations in n variables, where m = 2n, over F2. The challenges were
generated in a manner that guarantees their solvability without revealing the solution(s) to the
creators.

Previous records of solving type I challenges were held by the Fast Exhaustive Search and the
Crossbred algorithms, which were discussed in Section 3.1.3 and Section 3.1.5, respectively. With
128 Spartan 6 FPGAs, the Fast Exhaustive Search algorithm is able to perform a full enumeration

over the search space for an MQ system of 134 equations in 67 variables in 2(67−10)

200MHz·128·86400 = 65
days [19]. On the other hand, the original Crossbred algorithm can enumerate the same search
space in one day with a heterogeneous computer cluster consisting of 256 CPU cores [5]. To solve
an MQ system of 148 equations in 74 variables, the Fast Exhaustive Search algorithm however
requires 2924 FPGA-years while the Crossbred algorithm needs 41 CPU-years [40].

The experimental results of solving type I challenges, n = 55 ∼ 67, with one single GTX 980
graphics card on a node in the Saber2 cluster are given in Table 5.3, where time is measured in
seconds and all Macaulay matrices are of degree D = 4. The workflow of the algorithm, i.e. how
the search space is split and enumerated, is listed as the 3rd column in the table. Since given
parameters p and b (see Algorithm 9),MQ preprocessing and ParallelGrayCodeEnumerate might
have to be repeated at most 2p and 2b times respectively, the numbers inside the parentheses in
the 4th and 5th columns represent how many times they were repeated during the experiments.
For all these small experiments the GPU instead of CPU is used to extract sub-systems except for
the last two experiments marked with an asterisk, where the reduced Macaulay matrix becomes
too large to fit into the 4GB off-chip memory of GTX 980. As shown in Table 5.3, solving an
MQ system of 134 equations in 67 variables requires at most 354231.11 GPU-seconds = 98.39
GPU-hours, including the computation time of extracting sub-systems.

As for larger type I challenges, n = 68 ∼ 74, the workload is evenly shared by the aforementioned
27 computers in the Saber and Saber 2 clusters by distributing the 2p smallerMQ systems obtained
from MQ preprocessing. The results are given in Table 5.4, which basically has the same format
and notation as Table 5.3. In these larger experiments, sub-systems were extracted from degree-4
Macaulay matrices with the CPU and pipelined to the GPU (see Section 4.5) because the GPU
off-chip memory cannot accommodate the reduced Macaulay matrix anymore. Nevertheless, the
extraction of sub-system and the exhaustive search stage were pipelined therefore the computation
time of the former can be completely hidden except for the first run. Also note that since GTX
780 only has 3GB of off-chip memory while GTX 980 has 4GB, the parameter t and b have to be
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Number of Parameters Size of Search Runtime for Runtime for Total Maximal
Variables (D, p, k, b, t) Space to Enumerate Extracting Exhaustive Runtime Runtime

n 2p × 2b × 2n−p−k−b Sub-systems Search
55 (4, 0, 19, 0, 14) 1× 1× 236 387.80 318.25 706.20 706.20
56 (4, 1, 20, 0, 14) 21 × 1× 235 491.60 (1) 169.94 (1) 658.67 1317.34
57 (4, 0, 20, 0, 14) 1× 1× 237 606.75 650.90 1258.73 1258.73
58 (4, 0, 20, 0, 14) 1× 1× 238 670.26 1311.97 1982.74 1982.74
59 (4, 0, 20, 0, 14) 1× 1× 239 741.62 2619.00 3361.77 3361.77
60 (4, 0, 20, 0, 14) 1× 1× 240 782.12 5211.05 5994.41 5994.41
61 (4, 0, 20, 1, 14) 1× 21 × 240 872.34 5204.18 (1) 6077.13 11280.34
62 (4, 0, 20, 2, 14) 1× 22 × 240 920.24 10485.95 (2) 11407.64 21892.14
63 (4, 4, 21, 0, 14) 24 × 1× 238 9406.21 (11) 14827.94 (11) 24234.15 35250.72
64 (4, 3, 21, 1, 13) 23 × 21 × 239 1991.48 (2) 10469.58 (4) 12456.97 49844.24
65 (4, 3, 21, 2, 14) 23 × 22 × 239 1046.62 (1) 10517.21 (4) 11565.10 92510.64
66* (4, 1, 21, 5, 13) 21 × 25 × 239 16268.10 (2) 133896.93 (51) 151867.70 184295.62
67* (4, 0, 21, 7, 13) 1× 27 × 239 10298.95 198835.78 (74) 209172.34 354231.11

Table 5.3: Solving Overdetermined Systems with a Single GTX 980 Graphics Card

adjusted according to GTX 780 hence in some experiments the off-chip memory of the GTX 980
graphics cards was not fully utilized.

Number of Parameters Size of Search Runtime for Total Maximal
Variables (D, p, k, b, t) Space to Enumerate Extracting Runtime Runtime

n 2p × 2b × 2n−p−k−b Sub-systems (GPU-hours)
68 (4, 6, 21, 2, 13) 26 × 22 × 239 9799.15 12802.11 214.45
69 (4, 8, 22, 0, 13) 28 × 1× 239 11238.49 56697.70 229.10
70 (4, 7, 22, 2, 13) 27 × 22 × 239 14367.71 44223.81 452.65
71 (4, 8, 22, 2, 13) 28 × 22 × 239 14392.00 87415.91 947.20
72 (4, 9, 22, 2, 13) 29 × 22 × 239 13912.39 144145.58 1867.44
73 (4, 8, 22, 4, 13) 28 × 24 × 239 18055.07 159585.32 3700.87
74 (4, 10, 22, 3, 13) 210 × 23 × 239 15163.72 118323.38 8236.05

Table 5.4: Solving Overdetermined Systems with the Saber Cluster

As shown in Table 5.4, solving the largest Fukuoka type I MQ challenge where n = 74 with
MQsolver takes at most 8236.05 GPU-hours, which is much less than the original Crossbred
algorithm. In addition, based on the experimental result, one can estimate the security strength
of this particular MQ system, which is the number of operations required to solve the system
[29], as follows

Numoperations = 8236.05 · 2048 · 109 · 3600 · 0.3706

= 22503850942464000000.00

≈ 264.28

since a GTX 980 graphics card consists of 2048 CUDA cores operating at 1GHz, and the current
implementation of MQsolver achieves only 37.06% GPU utilization (see Section 4.6). Therefore,
an MQ system where n = 74,m = 2n, only provides 64.28 bits of security [29].

In order to provide 80 bits of security with an overdetermined MQ system where m = 2n,
one must set n = 92 since when n increases by one the number of operations required to solve the
MQ system grows by a factor of two. Nevertheless, the computation time required for solving an
MQ system of 184 equations in 92 variables is only

8236.05 · 2(92−74−2) = 539757772.80 (GPU-hours)

= 61616.18 (GPU-years).
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since with MQ preprocessing p = 8, the maximal value of the parameter k for the system is
24 (see Figure 5.1). As the result shows, solving such MQ systems is feasible for an adversary
supported by a nation or by a multinational conglomerate. Therefore one should not consider an
overdetermined MQ system which has a security strength of 80 bits secure anymore.

One can also observe that whenever the maximal value of the parameter k increases, either with
or withoutMQ preprocessing, the runtime almost stays the same despite the number of variables
increasing by one. For example, for two overdetermined MQ system F1, n = 68 and F2, n = 69,
by keeping 21 variables, there are 47 variables left in F1 to enumerate. On the other hand, for
F2 the maximal value of k can be increased by one with MQ preprocessing so 22 variables can
be kept. Therefore, there are also 47 variables to enumerate for F2. Hence for both systems
the total number of iterations that have to be performed during Gray code enumeration is the
same, no matter what the remaining parameters are. However, since for the F2 linear systems
in 22 variables instead of 21 have to be computed, the overhead of each iteration of Gray code
enumeration for F2 is slightly larger than F1. Hence, as shown in Table 5.4, the maximal runtime
for n = 69 is slightly larger than n = 68.

As explained in Algorithm 3, extracting a sub-system from a Macaulay matrix consists of four
major steps:

(I). Compute and permute the Macaulay matrix MackD.

(II). Perform row-swapping on the Macaulay matrix MackD.

(III). Reduce the dimension of the Macaulay matrix MackD.

(IV). Perform Gaussian elimination on the reduced Macaulay matrix RM.

The computation time of these four steps in the experiments listed in Table 5.3 and Table 5.4 is
given in Table 5.5 while the statistics of the original and the reduced Macaulay matrices are given
in Table 5.6. Similar to Table 5.3, experiments marked with an asterisk utilized the CPU instead
of GPU to perform Gaussian elimination on the reduced Macaulay matrix and the computation
time is measured in seconds.

Number of Parameters Runtime Runtime Runtime Runtime
Variables n (p, k, n− p) of step I of step II of step III of step IV

55 (0, 19, 55) 65.72 1.77 77.30 241.41
56 (1, 20, 55) 66.78 1.80 94.69 326.71
57 (0, 20, 57) 84.22 2.34 134.10 384.94
58 (0, 20, 58) 95.22 2.59 158.10 412.62
59 (0, 20, 59) 107.29 2.88 183.40 447.49
60 (0, 20, 60) 121.03 3.17 173.09 483.68
61 (0, 20, 61) 135.76 3.54 217.07 514.08
62 (0, 20, 62) 152.05 3.92 221.63 541.31
63 (4, 21, 59) 114.34 3.07 174.42 562.16
64 (3, 21, 61) 142.09 3.76 190.60 657.33
65 (3, 21, 62) 159.10 4.18 181.50 700.71
66* (1, 21, 65) 214.90 5.56 397.88 7514.57
67* (0, 21, 67) 262.15 6.73 336.09 9692.84
68* (6, 21, 62) 171.79 4.73 427.14 9146.14
69* (8, 22, 61) 157.96 4.61 438.51 10565.94
70* (7, 22, 63) 194.43 5.48 518.99 13629.33
71* (8, 22, 63) 197.37 5.51 537.72 13567.85
72* (9, 22, 63) 200.01 5.64 488.54 13095.87
73* (8, 22, 65) 244.72 6.87 702.67 16940.85
74* (10, 22, 64) 226.16 6.10 561.33 14271.25

Table 5.5: Runtime of Different Steps for Extracting a Sub-system

As shown in Table 5.5, most of the computation time for extracting a sub-system is spent on
Gaussian elimination. Row-swapping can be implemented by simply modifying the pointers which
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Number of Ratio of Dimension Dimension Size of MackD Size of RM
Variables Missing Pivot of MackD of RM (MB) (MB)

n Elements (%)
55 28.38 169510× 368831 43720× 258701 999.00 1348.90
56 32.62 172592× 368831 54147× 257139 1017.00 1660.28
57 32.05 188556× 425924 58381× 302316 1192.00 2104.57
58 31.28 198592× 456838 59585× 326074 1299.00 2316.62
59 30.49 208978× 489406 60693× 351200 1415.00 2541.68
60 29.69 219720× 523686 61699× 377746 1538.00 2779.16
61 28.90 230824× 559737 62642× 405810 1669.00 3030.97
62 28.14 242296× 597619 63565× 435495 1809.00 3300.65
63 31.89 223146× 489406 68214× 343881 1510.00 2797.31
64 31.38 242176× 559737 73161× 399909 1751.00 3488.58
65 30.68 254020× 597619 74589× 429279 1897.00 3817.88
66 30.68 283272× 722866 84122× 532979 2323.28 5345.55
67 29.64 305386× 816664 87735× 608620 2659.00 6366.32
68 28.13 265744× 597619 68374× 423064 1984.89 3449.16
69 32.30 261096× 559737 80601× 390948 1888.42 3757.26
70 31.53 282380× 637393 85545× 451757 2177.01 4607.76
71 30.76 286414× 637393 83473× 449685 2208.11 4475.77
72 30.00 290448× 637393 81401× 447613 2239.21 4344.18
73 29.53 313316× 722866 86834× 515804 2569.69 5340.34
74 28.62 307988× 679121 80875× 477573 2449.63 4605.49

Table 5.6: Effectiveness of Reducing the Dimension of Macaulay Matrices

store the addresses of the rows. In this manner, it can be done very efficiently, which takes a few
seconds to complete. In addition, Table 5.6 shows that in practice, Algorithm 3 can reduce the
size of the Macaulay matrix considerably because only ≈ 30% of the pivot elements are missing
when the maximum of the parameter k is chosen.

5.5 Determined Systems

To evaluate the difficulty of solving determined systems, which are not included in the Fukuoka
MQ challenges, random solvable determined system where n = m are generated and subsequently
solved with one single GTX 980 graphics card on a node in the Saber2 cluster. The experimental
results are given in Table 5.7, whose format and notation is the same as Table 5.3. All Macaulay
matrices are of degree D = 4.

Number of Parameters Size of Search Runtime for Runtime for Total Maximal
Variables (D, p, k, b, t) Space to Enumerate Extracting Exhaustive Runtime Runtime

n 2p × 2b × 2n−p−k−b Sub-systems Search
46 (4, 0, 12, 0, 16) 1× 1× 234 33.90 47.63 82.12 82.12
47 (4, 0, 12, 0, 15) 1× 1× 235 36.31 96.12 132.92 132.92
48 (4, 0, 12, 0, 15) 1× 1× 236 39.76 190.59 230.88 230.88
49 (4, 0, 12, 0, 15) 1× 1× 237 42.98 380.91 424.48 424.48
50 (4, 0, 12, 0, 15) 1× 1× 238 46.86 754.86 802.34 802.34
51 (4, 0, 12, 0, 15) 1× 1× 239 50.74 1542.07 1593.46 1593.46
52 (4, 0, 12, 0, 14) 1× 1× 240 53.59 3049.07 3103.21 3103.21
53 (4, 0, 12, 1, 14) 1× 21 × 240 57.05 6249.61 (2) 6307.22 6307.22
54 (4, 0, 12, 2, 14) 1× 22 × 240 60.86 3141.67 (1) 3205.11 12635.54
55 (4, 1, 13, 1, 14) 21 × 21 × 240 95.30 (1) 3322.54 (1) 3418.48 13480.76
56 (4, 0, 13, 3, 14) 1× 23 × 240 118.85 6600.55 (2) 6720.12 26521.05
57 (4, 0, 13, 4, 14) 1× 24 × 240 121.54 46053.43 (14) 46175.72 52754.03
58 (4, 0, 13, 5, 14) 1× 25 × 240 133.97 105432.90 (32) 105567.66 105567.66
59 (4, 0, 13, 6, 14) 1× 26 × 240 144.13 197303.32 (60) 197448.24 210601.00

Table 5.7: Solving Determined Systems with a Single GTX 980 Graphics Card
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For determined systems, the number of variables that can be kept is much smaller due to
that fact that fewer equations are available. However, the linear systems that are enumerated
during Gray code enumeration consist of fewer variables therefore the cost of each iteration is also
lower. As Table 5.7 shows, solving a determinedMQ systems in n variables is roughly as difficult
as solving an overdetermined MQ system where m′ = 2n′, n′ = n + 7 ∼ n + 8. Nevertheless,
Figure 5.1 shows that the gap between the number of variables that can be kept for determined
and overdetermined systems gradually becomes larger as n grows. Therefore, this observation only
applies to the systems in Table 5.7 but not to larger determined systems, e.g. n = 172.

Table 5.7 also shows that with the current implementation of MQsolver and by applying MQ
preprocessing with p = 5, solving the underlyingMQ system of a cryptographic scheme [54] that
has been proposed for post-quantum cryptography, where n = 84,m = 80, requires at most

25 · 210601.00 · 279−59−2

86400 · 365
= 56020.07 (GPU-years)

since for an MQ system F where n = 79,m = 80, the maximal value of k is 15 with degree-4
Macaulay matrices (see Section 5.1.2). Therefore the MQ system provides at most

56020.07 · 365 · 24 · 2048 · 109 · 3600 · 0.3706 = 1340866749519691776000000.00

≈ 280.15

80.15 bits of security. However, the computation time is expected to be only

56020.07

24
·

24−1∑
i=0

0.37i · 0.63 + 0.372
4

 = 3501.25 ·
(

1− 0.3716

1− 0.37
· 0.63 + 0.3716

)
= 3501.25 (GPU-years)

since a solution will appear with probability ≈ 0.63 whenever the search spaces of two systems like
F have been enumerated (see the beginning of Chapter 3). Hence the expected security strength
is merely

3501.25 · 365 · 24 · 2048 · 109 · 3600 · 0.3706 = 83804067127296000000000.00

≈ 276.15

76.15 bits, which is lower than claimed [54].
As the result shows, solving the underlying MQ systems of this particular cryptographic

scheme is clearly feasible for adversaries that are supported by nations or multi-national conglom-
erates. It is therefore recommended not to use the proposed parameters for this cryptographic
scheme [54]. In addition, together with the experimental result shown in Section 5.4, in general
MQ systems that only provide 80 bits of security should not be considered secure anymore.
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[44] Lazard D. Gröbner bases, Gaussian elimination and resolution of systems of algebraic equa-
tions. In van Hulzen J.A., editor, Computer Algebra. EUROCAL 1983, volume 162 of Lecture
Notes in Computer Science, pages 146–156. Springer, 1983.

[45] Mei X., Chu X. Dissecting GPU Memory Hierarchy Through Microbenchmarking. IEEE
Transactions on Parallel and Distributed Systems, 28:72–86, 2017.

[46] Montgomery P.L. A Block Lanczos Algorithm for Finding Dependencies over GF(2). In
Guillou L.C., Quisquater JJ., editor, Advances in Cryptology EUROCRYPT 1995, volume
921 of Lecture Notes in Computer Science, pages 106–120. Springer, 1995.

[47] Murphy S., Robshaw M.J. Essential Algebraic Structure within the AES. In Yung M., editor,
Advances in Cryptology CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science,
pages 1–16. Springer, 2002.

[48] NVIDIA Kepler GK110 Architecture Whitepaper. Nvidia Corpor-
ation, 2012. URL: https://www.nvidia.com/content/PDF/kepler/

NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf.

An Adaption of the Crossbred Algorithm for Solving Multivariate Quadratic Systems over F2 on GPUs 55

https://eprint.iacr.org/2009/483.pdf
https://eprint.iacr.org/2017/372.pdf
https://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf


BIBLIOGRAPHY

[49] CUDA C Programming Guide. Nvidia Corporation, January 2017. URL: http://docs.

nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf.

[50] CUDA C Best Practices Guide. Nvidia Corporation, January 2017. URL: http://docs.
nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf.

[51] CUDA Compiler Driver NVCC. Nvidia Corporation, January 2017. URL: http://docs.
nvidia.com/cuda/pdf/CUDA_Compiler_Driver_NVCC.pdf.

[52] Patarin J., Courtois N., Goubin L. QUARTZ, 128-Bit Long Digital Signatures. In Naccache
D., editor, Topics in Cryptology CT-RSA 2001, volume 2020 of Lecture Notes in Computer
Science, pages 282–297. Springer, 2001.

[53] Porras J., Baena J., Ding J. ZHFE, a New Multivariate Public Key Encryption Scheme.
In Mosca M., editor, Post-Quantum Cryptography. PQCrypto 2014, volume 8772 of Lecture
Notes in Computer Science, pages 229–245. Springer, Cham, 2014.

[54] Sakumoto K., Shirai T., Hiwatari H. Public-Key Identification Schemes Based on Multivariate
Quadratic Polynomials. In Rogaway P., editor, Advances in Cryptology CRYPTO 2011,
volume 6841 of Lecture Notes in Computer Science, pages 706–723. Springer, 2011.

[55] Szepieniec A., Ding J., Preneel B. Extension Field Cancellation: A New Central Trapdoor for
Multivariate Quadratic Systems. In Takagi T., editor, Post-Quantum Cryptography, volume
9606 of Lecture Notes in Computer Science, pages 182–196. Springer, Cham, 2016.

[56] Thomae E., Wolf C. Solving Underdetermined Systems of Multivariate Quadratic Equations
Revisited. In Fischlin M., Buchmann J., Manulis M., editor, Public Key Cryptography PKC
2012, volume 7293 of Lecture Notes in Computer Science, pages 156–171. Springer, 2012.

[57] Yang BY., Chen JM. All in the XL Family: Theory and Practice. In Park C., Chee S.,
editor, Information Security and Cryptology ICISC 2004, volume 3506 of Lecture Notes in
Computer Science, pages 67–86. Springer, 2005.

[58] Yang BY., Chen JM., Courtois N.T. On Asymptotic Security Estimates in XL and Grbner
Bases-Related Algebraic Cryptanalysis. In Lopez J., Qing S., Okamoto E., editor, Informa-
tion and Communications Security. ICICS 2004, volume 3269 of Lecture Notes in Computer
Science, pages 401–413. Springer, 2004.

[59] Yang BY., Chen O.CH., Bernstein D.J., Chen JM. Analysis of QUAD. In Biryukov A.,
editor, Fast Software Encryption. FSE 2007, volume 4593 of Lecture Notes in Computer
Science, pages 290–308. Springer, 2007.

[60] Yasuda T., Dahan X., Huang, YJ., Takagi T., Sakurai K. A Multivariate Quadratic Challenge
Toward Post-quantum Generation Cryptography. ACM Commun. Comput. Algebra, 49(3):
105–107, 2015.

56 An Adaption of the Crossbred Algorithm for Solving Multivariate Quadratic Systems over F2 on GPUs

http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_Compiler_Driver_NVCC.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_Compiler_Driver_NVCC.pdf


Appendix A

Appendix

A.1 Pseudocode for Multivariate Division

Algorithm 10 Multivariate Division

1: procedure MultiDiv
2: Input:
3: f1, f2, · · · , fm, f
4:

5: Initialize:
6: q1 ← 0, q2 ← 0, · · · qm ← 0
7: r ← 0
8: p← f
9:

10: while p 6= 0 do
11: i← 1
12: div occur ← false
13: while i ≤ m and div occur = false do
14: if LT(fi) divides LT(p) then

15: qi ← qi + LT(p)
LT(fi)

16: p← p− LT(p)
LT(fi)

· fi
17: div occur ← true
18: else
19: i← i+ 1
20: end if
21: end while
22: if div occur = false then
23: r ← r + LT(p)
24: p← p− LT(p)
25: end if
26: end while
27:

28: Output q1, q2, · · · , qm, r
29: end procedure
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