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Abstract. Previous efforts on making Satisfiability (SAT) solving fit for
high performance computing (HPC) have led to super-linear speedups
on particular formulae, but for most inputs cannot make efficient use of a
large number of processors. Moreover, long latencies (minutes to days) of
job scheduling make large-scale SAT solving on demand impractical for
most applications. We address both issues with Mallob, a framework for
job scheduling in the context of SAT solving which exploits malleability,
i.e., the ability to add or remove processing power from a job during
its computation. Mallob includes a massively parallel, distributed, and
malleable SAT solving engine based on HordeSat with a more succinct
and communication-efficient approach to clause sharing and numerous
further improvements over its precursor. Experiments with up to 2560
cores show that Mallob outperforms an improved version of HordeSat
and scales significantly better. Moreover, Mallob can solve many formulae
in parallel while dynamically adapting the assigned resources, and jobs
arriving in the system are usually initiated within a fraction of a second.

Keywords: Parallel SAT solving · Distributed computing · Malleable
load balancing

1 Introduction

Today’s applications of SAT solving are manifold and include areas such as
cryptography [26], formal software verification [23], and automated planning
[30]. Application-specific SAT encoders generate formulae which represent the
problem at hand stated in propositional logic. Oftentimes, multiple formulae
which represent different aspects or horizons of the problem are generated [23,
30]. The individual formulae range from trivial to extremely difficult, and their
difficulty is usually not known beforehand. Up to a certain degree, today’s high
performance computing (HPC) can facilitate the resolution of difficult problems.
In particular, we notice increased interest in performing SAT solving in on-
demand HPC environments that are often referred to as cloud [15,29]. This is
also reflected in the International SAT Competition 2020 featuring a cloud track
for the first time [11]. However, prior achievements of super-linear speedups for
particular application instances [4] must be set in relation with the total work
which must be invested in every single formula to achieve such peak speedups.
Furthermore, in most HPC systems, long latencies of job scheduling (ranging
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from minutes to days) hinder the quick resolution of a stream of jobs even if
most of the jobs are trivial. To address these issues, we believe that a SAT
solver tasked with a formula of unknown difficulty should be allotted a flexible
amount of computational resources based on the overall system load and further
task-dependent parameters. In the context of scheduling and load balancing, this
feature is called malleability : The ability of an algorithm to deal with a varying
number of processing elements during its execution [10]. Malleable algorithms
open up opportunities for highly dynamic load balancing techniques: The number
of associated processing elements for each job can be adjusted continuously to
warrant optimal and fair usage of available system resources [19].

In this work, we present a new framework for the scalable resolution of SAT
jobs on demand. Our system named Mallob consists of two major contributions.
First, we propose a decentralized approach to malleable job scheduling and load
balancing in the context of SAT solving. Secondly, we present a distributed and
malleable SAT solving engine based on the popular large-scale solver Horde-
Sat [4]: Most notably, we introduce a succinct and communication-efficient clause
exchange mechanism, adapt HordeSat’s solver backend to handle malleability,
and integrate a number of performance improvements. Experiments with up to
128 compute nodes (2560 cores) show that Mallob as a standalone SAT solver
clearly outperforms an updated and improved version of HordeSat and scales
significantly better. Moreover, Mallob can solve many formulae in parallel with
minimal overhead and combines parallel job processing with a flexible degree of
parallel SAT solving to make best use of the available resources. In most cases,
it only takes a split second until an arriving job is initiated.

After describing important preliminaries and related work in Sect. 2, we
present the malleable environment which hosts our solver engine in Sect. 3.
Thereupon, in Sect. 4 we present the solver engine itself. We present the evalu-
ation of our system in Sect. 5 and conclude our work in Sect. 6.

2 Related Work

Given a propositional formula F , the SAT problem is to find an assignment to
all variables in F such that F is satisfied, or to report that no such assign-
ment exists. For the sequential resolution of SAT problems, the most commonly
used algorithm is CDCL [25], which is essentially a highly engineered heuristic
depth-first search over the space of partial variable assignments. CDCL features
advanced techniques such as non-chronological backtracking and restart mech-
anisms. Furthermore, when a logical conflict is encountered, the solver learns
a clause which represents this conflict. The knowledge gained from this learn-
ing mechanism can help to speed up the subsequent search. Another branch of
notable sequential SAT solving approaches is the family of local search solvers
which perform stochastic local search over the space of variable assignments [18].

Parallel SAT solvers commonly use sequential SAT solvers as building blocks.
One strategy which is often called the portfolio approach is to execute sev-
eral solvers in parallel on the same formula [1,14]. Diversification strategies for
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an effective portfolio range from supplying different random seeds to the same
solver over reconfiguring the solver’s parameters to employing wholly different
SAT solvers. As an alternative to portfolio approaches, search space partitioning
approaches subdivide the original formula into several sub-formulae and solve
these in parallel [2,31]. An extreme case of this strategy is applied in parallel
Cube&Conquer approaches where a large number of subproblems is generated
and then distributed among all workers [15,17]. Regardless of the means of par-
allelization, an important feature of parallel solvers is to exchange learnt clauses
among all workers and, notably, to find a good tradeoff between the sharing of
useful information and the avoidance of unnecessary overhead [9].

The International SAT Competition 2020 [11] established a distinction
between modestly parallel SAT solving and high-performance SAT solving by
featuring both a parallel track and a cloud track. In the parallel track, a sin-
gle 32-core node was employed for up to 5000 s per instance while the cloud
track was evaluated on 100 8-core nodes for up to 1000 s per instance. These
different modes of operation require different solver architectures: For modest
parallelism in shared memory, high concurrency and memory consumption can
become a considerable issue [20]. On a larger scale, concurrency can be less of an
issue while good diversification and communication efficiency becomes critical.
HordeSat [4] is a popular solver designed for massive parallelism which served
as a baseline in the mentioned cloud track. It features a modular solver inter-
face which allows to plug in and dynamically diversify different core solvers.
Clause exchange is performed periodically via all-to-all collective operations.
The HordeSat paradigm found adoption in a generic interface for parallel SAT
solving [24].

Previously, a distributed system for SAT solving in the cloud was presented in
[28,29]. It features a centralized scheduler which precomputes a schedule based
on run time predictions and which employs sequential solvers without any com-
munication among them: The authors noted that “such solutions [for exchange
of knowledge] are not necessarily suitable for distributed clouds in which the
communication time could be important” [29]. In contrast, we demonstrate that
clause exchange is highly effective and introduce decentralized dynamic load bal-
ancing without any run time predictions. Another work related to ours is the
distributed Cube&Conquer solver Paracooba [15] which can also resolve multiple
jobs in parallel and also performs a kind of malleable load balancing. While Para-
cooba is designed for Cube&Conquer, we propose a malleable portfolio approach.
In the cloud track of the SAT Competition 2020 [11], our system outperformed
Paracooba and scored a clear first place.

3 Malleable Environment

We now outline the platform Mallob for the scheduling and load balancing of
malleable jobs. Mallob is an acronym for Malleable Load Balancer as well as
Multi-tasking Agile Logic Blackbox. As a comprehensive presentation of Mallob
in its entirety is too broad in scope for this publication, we present the design
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Fig. 1. System architecture used by Mallob

decisions and the features of Mallob that are necessary to understand our SAT
solving system and will describe the internal workings and theoretical properties
of our scheduling and load balancing in a future publication.

We consider a homogeneous1 distributed computing environment with m
compute nodes (see Fig. 1). For the sake of generality, we do not assume any
kind of shared (RAM or disk) memory between the nodes. As such, the only way
for the nodes to exchange information is to send messages over some broadband
interface. This is enabled by the Message Passing Interface (MPI) [13].

Each compute node contains several cores. We partition the cores on a node
into c groups of t cores each running one thread.2 Each group is implemented as
a process and is also called PE (for processing element) in the following. Overall,
our system contains a total of p := c · m PEs and c · m · t parallel threads.

A number of jobs 1, . . . , n arrive in the system at arbitrary times. A job
is a particular problem statement, in our case given by a propositional logic
formula in Conjunctive Normal Form (CNF). Every job j has a constant priority
πj ∈ (0, 1) and a demand of resources dj ∈ N which may vary over time. In the
most simple setting, dj = p at all times. More generally, a job can express with
dj how many PEs it is able to employ in its current stage of computation. We
expect the number of active jobs to be smaller than the number of workers,
which allows us to restrict each PE to compute on at most one job at a time.

If a job j enters the system, a request message r0(j) performs a random walk
through a sparse regular graph over all PEs until an idle PE p0(j), named the root
of j, adopts the job. This root remains unchanged throughout the job’s lifetime
and represents j in collective load balancing computations. Such a balancing
computation is triggered at most once within a certain period e (e.g., e = 0.1 s)
by (a) the arrival of a new job, (b) the completion of a job, and/or (c) the
change of a job’s demand. All such events are then broadcast globally with a
single lightweight collective operation. The result of each balancing is a map

1 While we intend to generalize our system to heterogeneous environments in the
future, this undertaking is out of scope for this publication.

2 The cores may be distributed over several CPU chips (or sockets). Moreover, each
core may be able to run several hardware threads. Our system can handle both
additional levels of hierarchy by appropriately defining c and t.
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Fig. 2. Illustration of Tj growing from volume 5 to 6. Each circle is a PE.

j �→ vj which assigns to each job j a certain integer, the volume vj ≥ 0. vj
is proportional to djpj/

∑
j′ dj′pj′ and determines the number of PEs which

participate in the resolution of j until the next update of vj .
The job tree Tj of job j is a binary tree of PEs that is rooted at p0(j). Its

purpose is to enforce the volume assigned to j and to enable efficient job-internal
communication. Each node px(j) in Tj has a unique index x ≥ 0. Node px(j) may
have child nodes p2x+1(j) (left child) and p2x+2(j) (right child). Tj is supposed to
consist of exactly vj nodes p0(j), . . . , pvj−1(j) and adjusts accordingly whenever
vj updates: Beginning from p0(j) which computes a new value of vj , a message
containing vj is sent through Tj as shown in Fig. 2. If this update arrives at a node
px(j) for which x ≥ vj , then the node will leave Tj and suspend its computation.
Conversely, if px(j) does not have a left (right) child node and if 2x + 1 < vj
(2x+2 < vj), it will send out a request r2x+1(j) ( r2x+2(j) ) for another idle PE to
join Tj . These messages are first routed over any former children of px(j) before
they begin a random walk. As such, our node allocation strategy prioritizes PEs
which may still host suspended job nodes of j. In order to make careful use of
main memory, we allow each PE to host a small constant number of job nodes
and let it discard the oldest job nodes if this limit is exceeded.

Mallob also features a special mode for the isolated resolution of a single job:
After a binary tree broadcast of the job description, the i-th PE assumes the
role of pi(j), and no further load balancing is required. As such, Mallob can be
employed as a conventional distributed solver without any noticeable overhead
compared to static distributed solver architectures such as HordeSat’s.

4 The Mallob SAT Engine

We now present our massively parallel, distributed, and malleable SAT solving
engine. We focus on (1) a succinct and communication-efficient clause exchange
which supports malleability; (2) a rework of HordeSat’s solver backend to support
malleability; and (3) practical optimizations and performance improvements.

4.1 Succinct Clause Exchange

HordeSat uses synchronous communication in rounds to periodically perform an
all-to-all clause exchange. The used collective operation is called an all-gather :
Each PE i contributes a buffer bi of fixed size β. The concatenation of all buffers,
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Fig. 3. Exemplary flow of information in the first half of HordeSat’s all-gather opera-
tion (left) and in our aggregation within a job tree (right). Each circle is a PE; a buffer
within a circle represents the PE’s locally collected (exported) clauses.

B := b1 ◦ . . . ◦ bp, is then broadcast to each PE. This all-gather operation is
included by default in all MPI implementations. Each bi contains a list of learned
clauses which were previously exported by the solvers of PE i. The clauses are
serialized in a compact shape, sorted by their size in increasing order. After the
all-gather, each solver imports clauses from B into its individual database.

We noticed that the above clause exchange mechanism has various shortcom-
ings. First, whenever a PE does not fill bi, B contains “holes” which carry no
information (see Fig. 3). Secondly, B may contain duplicates: In particular in the
beginning of SAT solving when a formula is simplified and basic propagations
are done, this may lead to p almost identical buffers bi. This effect is especially
pronounced for unit clauses (see below). Thirdly, B grows proportionally to the
number of involved PEs. For sufficiently large HordeSat configurations, this can
constitute a bottleneck in terms of communication volume and local work.

In our system, we use job tree Tj (as described in Sect. 3) as the communi-
cation structure for the clause exchange of each job j. As such, we ensure that
the PEs involved in a clause exchange are exactly the PEs that are currently
associated with j. As soon as a fixed amount of time s has passed since the last
broadcast of shared clauses (e.g., s = 1 s), each leaf px(j) in Tj sends bx to its
parent. When an inner node px(j) has received a buffer from each of its chil-
dren, it exports its own clauses bx and then performs a two- or three-way merge
of the present buffers: All buffers are read simultaneously from left to right and
aggregated into a single new buffer b′

x, similar to textbook k-way merge of sorted
sequences [27, 5.7.1]. In addition, we use a hash set of seen clauses with hashing
that is invariant to the order of literals [4] in order to recognize duplicates.

The size of b′
x is limited and any remaining unread information in the input

buffers is discarded. As each bi is sorted in increasing order by clause length,
we aggregate some of the globally shortest clauses while we strictly limit the
overall communication volume. Furthermore, we improve the density of use-
ful information in B because each intermediate buffer is compact and contains
no duplicate clauses. We limit the size of b′

x as follows: For each aggregation
step, i.e., for each further level of Tj that is reached, we discount the maximum
buffer size by a factor of α. Specifically, we compute the buffer size limit l(u) :=
�u · αlog2(u) · β� where u is the number of individual buffers bi aggregated so
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far. This limit can be steered by a user parameter α ∈ [12 , 1], the discount factor
at each buffer aggregation. We can see that l(u) converges to β for α = 1

2 and
grows indefinitely for α > 1

2 with respect to the number u of involved PEs. For
α = 1, l(u) grows proportionally in u just like HordeSat’s shared clause buffer.

HordeSat employs clause filtering to detect and discard redundant clauses
which have already been imported or exported before. This technique is real-
ized with an approximate membership query (AMQ) data structure. Each PE
employs one node filter fn and t solver filters (one for each solver thread). At
clause export, each clause is registered in its solver filter and then tested against
fn. At clause import, each clause is tested against fn and then against each
solver filter. Unit clauses, however, are always admitted due to their high impor-
tance. This is problematic because particular unit clauses can be sent around
many times and can waste a considerable amount of space in the buffers.

In our approach we omit fn because its main use is to filter duplicate clauses
which Mallob already detects during the aggregation of buffers. We comple-
mented the solver filters with an additional filtering of unit clauses, using an
exact set instead of an AMQ data structure. This way no false positives occur
for unit clauses, and each such clause is shared once. We also implemented a
probabilistic “restart” mechanism for clause filters: Every X seconds, half of all
clauses (chosen randomly) in each clause filter are forgotten and therefore can
be shared again. This allows solvers to eventually learn crucial clauses even if
they join Tj after these clauses have already been shared for the first time.

4.2 Malleable Solver Backend

In the following we present the most relevant changes we made to HordeSat’s
solver backend to support malleability.

Malleable Diversification. As in HordeSat, our approach relies on three dif-
ferent sources of diversification: Employing different solver configurations, hand-
ing different random seeds to the solvers, and supplying each solver with different
default polarities (phases) of variables. We diversify a particular solver S with a
diversification index xS ≥ 0 and a diversification seed σS . We use xS to deter-
mine a particular solver configuration and we use σS as a random seed and to
select random variable phases. The i-th solver S (0 ≤ i < t) employed by pk(j) is
assigned xS := kt+ i. We obtain σS by combining xS with the solver’s thread ID
(given by the operating system). As such, each instantiated solver is diversified
differently even if a job node is rescheduled and a solver S′ is instantiated for
which some solver S with xS = xS′ already existed before.

Preemption of Solvers. In our malleable environment, it is essential that a
PE’s main thread can suspend, resume, and terminate each job node at will.
We noticed that we cannot reliably notify a solver thread to stop or suspend its
execution because it can get stuck in expensive preprocessing and inprocessing
[6] for an extended period. Furthermore, it is impossible to forcefully abort a
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thread without terminating or, otherwise, potentially corrupting its surrounding
process. To still enable seamless preemption and termination, we enabled our
solver engine to be launched in a separate process. While this involves some
overhead, suspension and termination of a process is supported on the OS level
in a safe and elegant manner through signals. For instance, a PE’s main thread
can terminate a job node by sending “SIGTERM” to the solver process, which
then exits immediately regardless of the state of its solver threads.

4.3 Performance Improvements

We now present some further improvements of Mallob over HordeSat.

Solver Portfolio. HordeSat originally featured solver interfaces to Lingeling
and Minisat. However, the clause import in HordeSat’s Minisat interface treats
shared clauses just like original, irredundant clauses and periodically interrupts
each solver to add these clauses, what we believe to be detrimental to its perfor-
mance. Therefore, for this work we focus on Lingeling as an efficient and reliable
SAT solver with great diversification options and a dedicated clause import and
export mechanism. We updated Lingeling from its 2014 version [5] to its 2018
version [7] with the side effect of rendering all core modules of our system Free
Software. Similarly, instead of the 16 diversification options from the former
Plingeling [5], we use 13 CDCL diversification options from the newer Plingeling
[7]. Every fourteenth solver thread now uses local search solver YalSAT (included
in the Lingeling interface), alternatingly with and without preprocessing.

Lock-Free Clause Import. For each solver S within a PE, HordeSat’s main
thread copies all admitted clauses from clause sharing into a buffer BS , increasing
its size as necessary. The solver thread of S then imports the clauses in BS one
by one. As this implies concurrent access to BS , a mutually exclusive lock is
acquired by the solver thread before reading clauses and by the main thread
before writing clauses. If the solver thread cannot acquire this lock, it gives
up on importing a clause. We replaced BS with a lock-free ring buffer3 RS and
hence achieve a lock-free import of clauses. We also make more careful use of the
available memory: The size of RS is fixed and clauses are eventually discarded
if a solver consumes no clauses for some time. We set |RS | to a low multiple of
the maximum number of literals which may be shared in a single round.

Memory Usage. The memory consumption of parallel SAT solvers is a known
issue [20]: As each solver commonly maintains its own clause database, memory
requirements increase proportionally with the number of spawned solvers. As
such, large formulae can cause out-of-memory errors. To counteract this issue,
we introduce a simple but effective step of precaution: For a given threshold ŝ, if a
given serialized formula description has size s > ŝ, then only t′ = max{1, 
t·ŝ/s�}
3 https://github.com/rmind/ringbuf.

https://github.com/rmind/ringbuf
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threads will be spawned for each PE. The choice of ŝ depends on the amount
of available main memory per PE. Based on monitoring the memory usage for
different large formulae within a run where 3.2 GB were available per solver, we
use ŝ := 108. As t′ only depends on s, the t′ threads can be started immediately
upon the arrival of a formula without the need for any further inspection.

5 Evaluation

We now turn to the evaluation of our work. After explaining our setup, we first
evaluate the capabilities of our standalone SAT solver engine, denoted Mallob-
mono. We then evaluate Mallob with malleable job scheduling.

We implemented Mallob in C++17 and make use of OpenMPI [12]. Our soft-
ware, all experimental data with supplementary material, and an interactive
visualization of experiments can be found at https://github.com/domschrei/
mallob.

We experimentally compare Mallob to HordeSat, both with its original port-
folio and with the updated portfolio that Mallob uses. As HordeSat does not
necessarily represent the state-of-the-art in distributed SAT solving [2], we refer
to the SAT Competition 2020 [11] as well as the upcoming SAT Competition
2021 for state-of-the-art comparisons involving Mallob. We fixed a significant
performance bug to make HordeSat more competitive: In its original code, Lin-
geling was not given a callback providing the elapsed time since program start.
This caused each solver thread to fall back to frequent expensive system calls.

We ran most experiments on the ForHLR phase II, an HPC cluster with 1152
compute nodes with two 10-core Intel Xeon E5-2660 v3 processors and 64 GB of
main memory (RAM) each, connected by an InfiniBand 4X EDR interconnec-
tion. In addition, we ran some experiments on SuperMUC-NG, a supercomputer
which features 6336 compute nodes with a 24-core Xeon Platinum 8174 processor
and 96 GB of DDR4 RAM each and an OmniPath network interconnection. We
used the operating system Red Hat Enterprise Linux (RHEL) 7.x on ForHLR II
and SUSE Linux Enterprise Server (SLES) 12.x on SuperMUC-NG.

We limited most runs to 300 s per instance. As such, the CPU time per
instance at our largest configuration of 2560 cores is at 213 core hours (ch),
similar in scale to the 222 ch per instance in the SAT Competition’s cloud track.
At the next smaller scale of 640 cores, 300 s translate to 53 ch which is similar
in scale to the 44 ch per instance in the competition’s parallel track.

5.1 Selection of Benchmarks

As the usage of HPC environments is costly in terms of money and energy, we
aimed to run experiments responsibly and resource-efficiently while still ensuring
statistical relevance and robustness of results. For this means we analyzed the
400 benchmarks of the SAT Competition 2020 with GBD [21] and partitioned
them into 80 separate families (including families from past competitions). We
sorted the instances of each family by the number of contained clauses and then
randomly picked one SAT instance from the second (larger) half of each family’s

https://github.com/domschrei/mallob
https://github.com/domschrei/mallob
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sorted instance list. As such, we obtained a selection of 80 instances (35 satis-
fiable, 35 unsatisfiable, 10 “unknown”). We then compared the official rankings
of the SAT Competition 2020 [11] with rankings resulting from our selection
of benchmarks. In the cloud track, our selection of benchmarks reproduces the
exact same ranking of solvers. In the parallel track, we computed a Kendall rank
correlation coefficient [22] of τ = 0.82 over all non-disqualified submissions: 41
pairs of solvers were ranked consistently while four pairs were ranked differently.
In particular, the top three solvers were identical. Therefore, we believe that we
found a reasonably diverse selection of benchmarks for our means. However, as
the reduction of a test set generally increases the risk of overfitting, we treated
better performing but more complicated configurations of our system with cau-
tion and only adopted them when we found the improvement to be significant.

5.2 Standalone SAT Solving Performance

We now discuss our experiments involving HordeSat and Mallob-mono. We per-
formed our experiments on 128 nodes of ForHLR II with a total of 2560 physical
cores. Consistent with the default configuration of HordeSat, we bind each MPI
process to four physical cores. Consequently, we execute 20/4 = 5 MPI pro-
cesses on each node which results in up to 128 · 5 = 640 PEs with up to four
solvers each. We included HordeSat both with its original solvers (“old”) and our
updated portfolio (“new”). We included Mallob with different discount factors
α in a basic configuration that is as close as possible to HordeSat. HordeSat
imposes an upper bound on the LBD or “glue” value [3] of clauses that are
exported: Initially, a clause must be unit or have a maximum LBD score of 2 to
be shared, and whenever a PE fills its clause buffer by less than 80% this limit
is incremented. We also adopted this mechanism in Mallob. We turned off our
clause filter half life mechanism (i.e., we set X = ∞) for all runs of Mallob-mono.

As Fig. 4 shows, the updated solvers improve HordeSat’s performance con-
siderably. Furthermore, the most näıve and untuned configuration of Mallob
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Mallob α = 8/8
Mallob α = 7/8
Mallob α = 6/8
Mallob α = 5/8
Mallob α = 4/8
HordeSat (new)
HordeSat (old)

Configuration # (+, -) PAR-2
HordeSat (old) 51 23 28 252.7
HordeSat 59 28 31 193.7
Mallob α = 4/8 59 29 30 196.2
Mallob α = 5/8 62 30 32 169.6
Mallob α = 6/8 63 30 33 157.4
Mallob α = 7/8 63 31 32 154.0
Mallob α = 8/8 64 31 33 158.2

Fig. 4. Performance of HordeSat and “näıve” Mallob on 128 compute nodes. The table
shows solved instances (SAT, UNSAT) and PAR-2 scores [16] (lower is better).
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Fig. 5. Scaling behavior of HordeSat (with updated solvers) and Mallob (α = 7/8,
without any clause length or LBD limits) compared to two sequential solvers.

with α = 1 outperforms HordeSat even if both systems make use of the exact
same solvers. If α = 0.5, only a very small clause buffer of less than 1500 inte-
gers is shared each round which proves to be highly detrimental to Mallob’s
performance and underlines the importance of clause sharing. The best overall
performance is achieved with α = 7/8 whereas α = 6/8 is a close second.

We provide further experimental results for the parametrization of Mallob in
the publication’s supplementary material (see Sect. 5). Measured on 128 nodes,
Mallob achieved best performance without HordeSat’s LBD limit mechanism.
We also tested a maximum clause length limit of 5 and 10 and found the results
to be mostly inconclusive. As such, we continue with a very simple configuration
of Mallob without any strict limits on clause lengths or LBD scores.

We now discuss the scalability of our solver. Figure 5 provides an overview
on the performance of both HordeSat and Mallob when executed on 12, 40, 160,
640, and 2560 cores. As sequential baselines we included Lingeling (in the 2018
version used by Mallob) as well as Kissat [8], the winner of the SAT Competition
2020’s main track. Table 1 shows pairwise speedups. We used a time limit of
τs = 50 000 s for sequential solvers and τp = 300 s for parallel solvers. As in [4]
we “generously” attribute a run time of τs to the sequential approach for each
unsolved instance solved by the parallel approach. We computed the median
speedup Smed and the total speedup Stot (the sum of all sequential run times
divided by the sum of all parallel run times). We also provide speedups emulating
“weak scaling”, i.e., only considering instances for which the sequential approach
took at least as many seconds as the number of cores in the parallel approach.

While both parallel solvers show improved performance whenever the num-
ber of cores is quadrupled, HordeSat clearly lacks scalability beyond 32 nodes.
As such, Mallob on only 32 nodes outperforms HordeSat on 128 nodes. Further-
more, the 128-node configuration of Mallob achieves a much more pronounced
speedup over its 32-node configuration, although we do notice some degree of
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Table 1. Parallel speedups for HordeSat (H) and Mallob (M). In the left half, “#”
denotes the number of instances solved by the parallel approach and Smed (Stot) denotes
the median (total) speedup for these instances compared to Lingeling / Kissat. In the
right half, only instances are considered for which the sequential solver took at least
(num. cores of parallel solver) seconds to solve. Here, “#” denotes the number of
considered instances for each combination.

Config. # All instances Hard instances

Lingeling Kissat Lingeling Kissat

Smed Stot Smed Stot # Smed Stot # Smed Stot

H1×3×4 36 3.84 51.90 2.22 29.55 32 4.39 52.01 31 4.03 32.49

H2×5×4 40 12.00 95.80 5.06 64.44 35 12.27 96.83 33 9.11 69.63

H8×5×4 49 22.83 135.55 9.76 90.08 38 32.00 142.76 32 24.88 105.94

H32×5×4 56 42.12 203.66 15.25 112.14 34 97.61 231.77 19 114.86 208.68

H128×5×4 59 50.35 204.10 17.38 111.46 21 356.33 444.12 10 243.42 375.04

M1×3×4 35 4.83 58.15 3.62 64.66 31 5.37 58.24 30 5.29 66.08

M2×5×4 44 12.98 94.44 10.52 67.71 39 14.37 95.28 37 11.54 69.25

M8×5×4 52 28.38 154.62 12.06 89.61 41 34.29 162.23 34 23.43 106.85

M32×5×4 60 53.75 220.92 23.41 148.57 37 152.19 245.54 23 134.07 262.04

M128×5×4 65 81.60 308.48 25.97 175.58 25 363.32 447.97 12 363.32 483.11

diminishing returns as well. This decline in efficiency motivates the next stage
of our evaluations where Mallob resolves multiple jobs in parallel.

5.3 Malleable Job Scheduling

To evaluate Mallob in its scheduling mode, we appoint one PE as a designated
“client” which introduces jobs to the system and receives results or timeout noti-
fications. Furthermore, the randomized scheduling and load balancing paradigm
of Mallob requires that a small ratio ε of PEs is reserved to remain idle. We
cautiously chose ε = 0.05 but expect that lower values of ε can be viable. We
limited each PE to keep a maximum of three job nodes (active or inactive).

In a first experiment, we test the basic malleability of our solving engine. We
use 64 compute nodes of SuperMUC-NG with a total of 1536 cores and partition
each node into six PEs à four cores, resulting in 384 PEs in total. As such, we
obtain up to 
(1 − ε)(p − 1)� = 
0.95 · 383� = 363 parallel active job nodes. We
introduce a sequential chain of 80 jobs to the system. Periodically (once every
30 s), a “stranger” job arrives and resides in the system for a limited time (15 s)
during which it occupies half of the available PEs. We run this experiment with
and without a clause filter half life X = 90, chosen by preliminary tests, to
evaluate its impact in such a malleable setting. As a comparison, we repeat the
experiment on 64 and on 32 compute nodes without any disturbances.

Figure 6 shows that the run with disturbances performed worse than the
static (i.e., undisturbed) large run and better than the static small run, which is
consistent with the available CPU resources in these runs. The periodic reduction
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Configuration # (+, -) PAR-2
32×6×4 X=∞ 61 28 33 176.6
64×6×4 X=90 dstrb. 61 28 33 174.5
64×6×4 X=∞ dstrb. 62 29 33 166.9
64×6×4 X=∞ 64 31 33 153.5

Fig. 6. Performance of Mallob with X = ∞ (note the range of the y-axis) with and
without periodic disturbances. The table shows solved instances (SAT, UNSAT) and
PAR-2 scores [16] (lower is better) and also includes a variant with X = 90.

of clause filters was not helpful but rather detrimental to Mallob’s performance
in this specific setting. Still, for the following experiments we continue with a
(potentially suboptimal) value of X = 90 because we want to ensure from a
design perspective that crucial clauses are eventually shared with the PEs which
arrive late to a job. We intend to pursue more reliable and explicit clause re-
sharing strategies for malleable SAT solving in the future.

In our next experiment, we let Mallob resolve several jobs at once to evaluate
its load balancing. We use 128 compute nodes of ForHLR II and run four PEs à
five threads on each compute node (because this fits best the two-socket hardware
at hand). As such, we have 512 PEs and up to 485 parallel active job nodes with
ε = 0.05. We limit the number of parallel jobs in the system to J = 4 (16, 64)
which leads to about 121 (30, 7) PEs or 605 (150, 35) threads per job compared
to the 640 (160, 40) threads of the closest tested configuration of Mallob-mono.

For 96% of all measurements we counted exactly 485 busy PEs (94.9% system
load). The job scheduling times, measured from the introduction of the initial
job request r0(j) to the initiation of the job description transfer to p0(j), ranged
from 0.003 s to 0.781 s (average 0.061 s, median 0.006 s). Our scheduling and load
balancing imposes very little overhead: With J = 4 (16, 64) we measured an
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Mallob J = 4 58 26 32 192.7
Mb-mono m = 32 60 28 32 181.4
Mallob J = 16 54 24 30 232.7
Mb-mono m = 8 52 23 29 240.1
Mallob J = 64 49 21 28 279.0
Mb-mono m = 2 44 19 25 299.8

Fig. 7. Experiment with a uniform number J of parallel jobs. Left: Number of active
jobs and cumulative number of scheduled jobs and done (i.e., finished or cancelled)
jobs with J = 16 (measured each second). Right: Solved instances and PAR-2 scores
(lower is better) of Mallob with J = 4, 16, 64 and of comparable Mallob-mono runs.
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average of 3.1% (3.0%, 3.0%) of active core time in the PEs’ main threads which
collectively perform the entire scheduling, load balancing, and communication.

We now compare Mallob with J = 4 (16, 64) with Mallob-mono on 640
(160, 40) cores. Figure 7 (right) shows that the run with J = 4 performed worse,
the run with J = 16 performed better and the run with J = 64 performed
much better than its closest mono configuration: When few active jobs are left,
additional PEs are available to accelerate the resolution of the remaining jobs.
This effect is more pronounced the more jobs are being processed overall.

In a final experiment, we evaluate the performance and resource efficiency of
Mallob and its scheduling in a more ambitious setting. We again use 128×4×5
cores of ForHLR II. We immediately introduce all 400 benchmark instances of the
SAT Competition 2020 at system start and do not impose any time limit per job.
As a comparison, we measured the performance of Mallob-mono on 128 nodes for
each instance and computed a hypothetical optimal sequential scheduler (HOSS)
which knows each job’s run time in advance. To minimize average response
times, the HOSS schedules the 400 runs of Mallob-mono sorted by their run
time in ascending order. We also include two trivial but practical schedulers
which process all jobs “embarrassingly parallel” by running 400 instances of
Lingeling or Kissat at the same time.

Figure 8 shows that the HOSS outperforms 400 Lingelings, but performs
worse than 400 Kissats in terms of median response times. This underlines
both the great performance of Kissat and the high resource efficiency of (state-
of-the-art) sequential SAT solvers. However, Mallob with malleable scheduling
outperforms any of the extremes as it combines parallel job processing with a
flexible degree of parallel SAT solving: As more and more jobs finished over
time, the average number of cores per job increased steadily from 7.2 to 24.
Our system solved 299 instances within 4378 core hours (ch) while the HOSS
solves 270 instances with the same resources and takes 7358 ch to solve the same
number of instances. To put these measures in perspective [11], Mallob-mono
in the SAT Competition 2020 spent 29449 ch for solving 299 instances (7005 ch
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Configuration avg. med. avg. med.
Mallob J = ∞ 2422.4 679.8 808.6 260.6
400×Kissat 2998.4 1362.5 975.5 355.5
HOSS 2774.7 2024.5 1396.4 937.3
400×Lingeling 4436.0 7200.0 1559.2 819.9

Fig. 8. Cumulative solved instances by different scheduling approaches on 128 compute
nodes within two hours. The table shows average and median response times, calculated
for all 400 instances (Rall) and for the solved instances per approach (Rslv). Each
unsolved instance leads to a response time of 7200 s.
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for solved instances, 22444 ch for unsolved instances), more instances than any
other solver. The winning system of the parallel track solved 284 instances within
6548 ch (1392 ch for solved and 5156 ch for unsolved instances). In both cases we
estimate the used hardware to be similar in per-core performance to the hard-
ware we used.

To conclude, Mallob is able to find a flexible trade-off between the resource-
efficiency of parallel job processing and the speedups obtained by parallel SAT
solving based on the current system load. For real world applications, various
mechanisms of Mallob can help to steer this degree of parallelism, such as limiting
the maximum number J of concurrent jobs, setting individual job priorities, and
limiting a job’s maximum volume and its (wallclock or CPU) time budget.

6 Conclusion

In order to improve the scalability and resource efficiency of SAT solving in cloud
environments, we introduced the Mallob framework for the scalable resolution
of SAT jobs on demand. We presented a new approach to malleable job schedul-
ing and a SAT solving engine based on HordeSat which features succinct clause
sharing, a reworked solver backend supporting malleability, and various practi-
cal improvements. We showed that our standalone SAT solver outperforms an
improved version of HordeSat and leads to better speedups. We observed that
our job scheduling and load balancing imposes very little overhead and that
Mallob’s combination of parallel job processing and flexible parallel SAT solving
is able to improve resource efficiency and response times in a cloud environment.

While we focused on Mallob’s SAT solving capabilities in this work, for future
work we intend to evaluate the general scheduling and load balancing properties
of Mallob under more realistic job arrival rates and varying job priorities. Sec-
ondly, we intend to integrate further solver backends and explore better methods
for the re-sharing of crucial clauses in order to improve Mallob’s performance.
Thirdly, we intend to advance Mallob by adding support for incremental SAT
solving and for related applications such as automated planning [30].
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