
Faster exponential time algorithms for the shortest vector problem∗

Daniele Micciancio† Panagiotis Voulgaris†

Abstract

We present new faster algorithms for the exact solution of

the shortest vector problem in arbitrary lattices. Our main

result shows that the shortest vector in any n-dimensional

lattice can be found in time 23.199n (and space 21.325n), or in

space 21.095n (and still time 2O(n)). This improves the best

previously known algorithm by Ajtai, Kumar and Sivakumar

[Proceedings of STOC 2001] which was shown by Nguyen

and Vidick [J. Math. Crypto. 2(2):181–207] to run in time

25.9n and space 22.95n. We also present a practical variant

of our algorithm which provably uses an amount of space

proportional to τn, the “kissing” constant in dimension n.

No upper bound on the running time of our second algorithm

is currently known, but experimentally the algorithm seems

to perform fairly well in practice, with running time 20.52n,

and space complexity 20.2n.

Keywords: Algorithm Analysis, Cryptography, Shortest

Vector Problem, Sieving algorithms, Software implementations

1 Introduction

The shortest vector problem (SVP) is the most famous
and widely studied computational problem on point lat-
tices. It is the core of many algorithmic applications (see
survey papers [14, 6, 20]), and the problem underlying
many cryptographic functions (e.g., [2, 3, 25, 26, 22, 9]).
Still, our understanding of the complexity of this prob-
lem, and the best known algorithms to solve it, is quite
poor. The asymptotically fastest known algorithm for
SVP (namely, the AKS Sieve introduced by Ajtai, Ku-
mar and Sivakumar in [4]) runs in probabilistic expo-
nential time 2O(n), where n is the dimension of the lat-
tice. However, even the fastest known practical variant
of this algorithm [21] is outperformed by the asymp-
totically inferior 2O(n2)-time Schnorr-Euchner enumer-
ation algorithm [29] at least up to dimension n ≈ 50,
at which point it becomes impractical. A similar situ-
ation exists in the context of approximation algorithms
for SVP, where the heuristic algorithm of [29] (which is

∗Supported in part by NSF grant CCF-0634909. Any opinions,

findings, and conclusions or recommendations expressed in this
material are those of the author and do not necessarily reflect the

views of the National Science Foundation.
†University of California, San Diego, e-mail: {daniele, pvoul-

gar}@ cs.ucsd.edu

not even known to run in polynomial time) is preferred
in practice to provable polynomial time approximation
algorithms like [28, 7].

This discrepancy between asymptotically faster al-
gorithms and algorithms that perform well in practice is
especially unsatisfactory in the context of lattice based
cryptography, where one needs to extrapolate the run-
ning time of the best known algorithms to ranges of
parameters that are practically infeasible in order to
determine appropriate key sizes for the cryptographic
function.

In this paper we present and analyze new algorithms
for the shortest vector problem in arbitrary lattices
that both improve the best previously known worst-case
asymptotic complexity and also have the advantage of
performing pretty well in practice, thereby reducing the
gap between theoretical and practical algorithms. More
specifically, we present:

• List Sieve: A new probabilistic algorithm that
provably finds the shortest vector in any n dimen-
sional lattice (in the worst case, and with high prob-
ability) in time Õ(23.199n) and space Õ(21.325n)
(or space 21.095n and still 2O(n) time), improv-
ing the Õ(25.9n)-time and Õ(22.95n)-space complex-
ity bounds of the asymptotically best previously
known algorithm [4, 21], and

• Gauss Sieve: A practical variant of List Sieve that
admits much better space bounds, and outperforms
the best previous practical implementation [21] of
the AKS sieve [4].

The space complexity of our second algorithm can
be bounded by Õ(τn), where τn is the so called “kiss-
ing” constant in n-dimensional space, i.e., the maxi-
mum number of equal n-dimensional spheres that can
be made to touch another sphere, without touching
each other. The best currently known lower and up-
per bounds on the kissing constant are 2(0.2075+o(1))n <
τn < 2(0.401+o(1))n [5]. Based on these bounds we can
conclude that the worst-case space complexity of our
second algorithm is certainly bounded by 20.402n. More-
over, in practice we should expect the space complexity
to be near 20.21n, because finding a family of lattices
for which the algorithm uses more than 20.21n space
would imply denser arrangements of hyperspheres than

1468 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/2

2/
24

 to
 1

83
.2

42
.2

54
.1

26
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

currently known, a long standing open problem in the
study of spherical codes. So, input lattices for which
our algorithm uses more than 20.21n space either do not
exist (i.e., the worst-case space complexity is 20.21n), or
do not occur in practice because they are very hard to
find. The practical experiments reported in Section 5
are consistent with our analysis, and suggest that the
space complexity of our second algorithm is indeed near
20.21n. Unfortunately, we are unable to prove any upper
bound on the running time of our second algorithm, but
our experiments suggest that the algorithm runs in time
20.52n.

The rest of the paper is organized as follows. In
the following subsections we provide a more detailed de-
scription of previous work (Section 1.1) and an overview
of our new algorithms (Section 1.2) and contribution
(Section 1.3). In Section 2 we give some background
about point lattices and the shortest vector problem. In
Section 3 we describe our new algorithms and state the-
orems about their complexity. Section 4 gives the proof
for the time and space complexity asymptotic bounds,
while Section 5 contains our experimental results. In
Section 6 we give a detailed comparison between our al-
gorithms and the AKS sieve. Section 7 concludes with
a discussion of open problems.

1.1 Prior work Algorithms for the exact solution
of the shortest vector problem can be classified in two
broad categories: enumeration algorithms, and sieving
algorithms. Enumeration algorithms, given a lattice ba-
sis B, systematically explore a region of space (cen-
tered around the origin) that is guaranteed to contain
a nonzero shortest lattice vector. The running time of
these algorithms is roughly proportional to the number
of lattice points in that region, which, in turn depends
on the quality of the input basis. Using an LLL reduced
basis [16], the Fincke-Pohst enumeration algorithm [23]
finds the shortest lattice vector in time Õ(2O(n2)). Sev-
eral variants of this algorithm have been proposed (see
[1] for a survey,) including the Schnorr-Euchner enu-
meration method [29], currently used in state of the
art practical lattice reduction implementations [30, 24].
Using a clever preprocessing method, Kannan [13] has
given an improved enumeration algorithm that finds the
shortest lattice vector in time 2O(n logn). This is the
asymptotically best deterministic algorithm known to
date, but does not perform well in practice due to the
substantial overhead incurred during preprocessing (see
[10] for further information about the theoretical and
practical performance of Kannan’s algorithm).

The AKS Sieve, introduced by Ajtai, Kumar and
Sivakumar in [4], lowers the running time complexity
of SVP to a simple exponential function 2O(n) using

randomization. We refer collectively to the algorithm
of [4] and its variants as proposed in [21] and in this
paper, as sieve algorithms. A major practical drawback
of sieve algorithms (compared to the polynomial space
deterministic enumeration methods) is that they require
exponential space. A careful analysis of the AKS Sieve
is given by Nguyen and Vidick in [21], building on ideas
from [27]. Their analysis shows that the AKS Sieve
runs in Õ(25.9n)-time using Õ(22.95n) space. Nguyen
and Vidick [21] also propose a practical variant of
the AKS sieve, and demonstrate experimentally that
the algorithm can be run in practice using reasonable
computational resources, but it is not competitive with
enumeration methods at least up to dimension 50, at
which point the algorithm is already impractical.

1.2 Overview In this paper we improve on [4, 21]
both in theory and in practice, proposing new variants
of the sieve algorithm with better exponential worst-
case running time and space complexity bounds, and
better practical performance. In order to describe the
main idea behind our algorithms, we first recall how
the sieve algorithm of [4] works. The algorithm starts
by generating a large (exponential) number of random
lattice points P within a large (but bounded) region
of space. Informally, the points P are passed through a
sequence of finer and finer “sieves”, that produce shorter
and shorter vectors, while “wasting” some of the sieved
vectors along the way. (The reader is referred to the
original article [4] as well as the recent analysis [21] for
a more detailed and technical description of the AKS
sieve.)

While using many technical ideas from [4, 21], our
algorithms depart from the general strategy of starting
from a large pool P of (initially long) lattice vectors, and
obtaining smaller and smaller sets of shorter vectors.
Instead, our algorithms start from an initially empty
list L of points, and increase the length of the list
by appending new lattice points to it. In our first
algorithm List Sieve, the points in the list never change:
we only keep adding new vectors to the list. Before a
new point v is added to the list, we attempt to reduce
the length of v as much as possible by subtracting the
vectors already in the list from it. Reducing new lattice
vectors against the vectors already in the list allows us
to prove a lower bound on the angle between any two
list points of similar norm. This lower bound on the
angle between list points allows us to apply the linear
programming bound for spherical codes of Kabatiansky
and Levenshtein [12] to prove that the list L cannot be
too long. The upper bound on the list size then easily
translates to corresponding upper bounds on the time
and space complexity of the algorithm.

1469 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/2

2/
24

 to
 1

83
.2

42
.2

54
.1

26
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Similarly to previous work [4, 21], in order to
prove that the algorithm produces non-zero vectors,
we employ a now standard perturbation technique.
Specifically, instead of generating a random lattice point
v and reducing it against the vectors already in the list,
we generate a perturbed lattice point v + e (where e is
a small error vector), and reduce v + e instead. The
norm of the error e is large enough, so that the lattice
point v is not uniquely determined by v + e. This
uncertainty about v allows to easily prove that after
reduction against the list, the vector v is not too likely
to be zero. Unfortunately the introduction of errors
reduces the effectiveness of sieving and increases the
space complexity.

In practice, as shown in [21], variants of sieving
algorithms without errors, perform much better, but
lack theoretical time bounds. Gauss Sieve is a practical
variant of List Sieve without errors which incorporates
a new heuristic technique. Beside reducing new lattice
points v against the points already in the list L, the
algorithm also reduces the points in L against v, and
against each other. As a result, the list L has the
property that any pair of vectors in L forms a Gauss
reduced basis. It follows from the properties of Gauss
reduced bases that the angle between any two list points
is at least π/3, that is the list forms a good spherical
code. In particular, the list length never exceeds the
kissing constant τn, which is defined as the highest
number of points that can be placed on a sphere, while
keeping the minimal angle between any two points at
least π/3.1 As already discussed, this allows to bound
the space complexity of our second algorithm by 20.402n

in theory, or 20.21n in practice. Unfortunately, we are
unable to bound the running time of this modified
algorithm, as we don’t know how to prove that it
produces nonzero vectors. However, the algorithm
seems to work very well in practice, and outperforms
the best previously known variants/implementations
of the AKS Sieve [21] both in theory (in terms of
provable space bounds,) and in practice (in terms of
experimentally observed space and time requirements).

1.3 Contribution: Our contribution is both analyt-
ical and algorithmic. On the analytical side, we explic-
itly introduce the use of sphere packing bounds in the
study of sieve algorithms for lattice problems. Such us-
age was already implicit in previous work, but somehow
obfuscated by the complexity of previous algorithms and
analyses. Our simpler algorithms and explicit connec-

1The name “kissing” constant originates from the fact that
π/3 is precisely the minimal angle between the centers of two

nonintersecting equal spheres that touch (kiss) a third sphere of

the same radius.

tion to sphere packings, allows us to relate the perfor-
mance of sieve algorithms to well studied quantities in
the theory of spherical codes, and make use of the best
bounds known to date [12]. We remark that these bound
are broadly applicable, and can be used to improve the
analysis of previous sieving algorithms [4, 21] as well.
However, this is not the only source of improvement. In
Section 6 we sketch how to apply sphere packing bounds
to the analysis of the original sieve algorithm [4, 21], and
show that, even using the powerful linear programming
bound of [12], only yields provable space and time com-
plexity bounds approximately equal to 21.97n and 23.4n,
which is still worse than the performance of our theo-
retical algorithm by an exponential factor.

On the algorithmic side, we introduce a new siev-
ing strategy, as described in the previous section. While
at first sight the new strategy may look like a sim-
ple reordering of the instructions executed by the origi-
nal sieve of Ajtai, Kumar and Sivakumar [4], there are
deeper algorithmic differences that lead to a noticeable
reduction in both the provable space and time complex-
ity. The main source of algorithmic improvement is the
way our new sieving strategy deals with useless points,
i.e., samples that potentially yield zero vectors in the
original sieve. In our algorithms these vectors are imme-
diately recognized and discarded. In the original sieve
algorithm these vectors are generated at the outset, and
remain undetected during the entire execution, until the
algorithm reaches its final stage. Both in the analysis of
[4, 21] and in this paper, such useless points are poten-
tially an overwhelming fraction of all samples, leading
to a noticeable difference in performance. For a more
detailed description of the relevant algorithmic differ-
ences between the AKS sieve and our new proposal, the
reader is referred to Section 6.

2 Background

In this section we review standard definitions and no-
tation used in the algorithmic study of lattices, mostly
following [19].

General: We write log for the logarithm to the
base 2, and logq when the base q is any number possibly
different from 2. We use ω(f(n)) to denote the set of
functions growing faster than c · f(n) for any c > 0. A
function e(n) is negligible if e(n) < 1/nc for any c > 0
and all sufficiently large n. We write f = Õ(g) when
f(n) is bounded by g(n) up to polylogarithmic factors,
i.e., f(n) ≤ logc g(n) · g(n) for some constant c and all
sufficiently large n.

The n-dimensional Euclidean space is denoted Rn.
We use bold lower case letters (e.g., x) to denote vectors,
and bold upper case letters (e.g., M) to denote matrices.
The ith coordinate of x is denoted xi. For a set S ⊆ Rn,

1470 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/2

2/
24

 to
 1

83
.2

42
.2

54
.1

26
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

x ∈ Rn and a ∈ R, we let S+x = {y+x : y ∈ S} denote
the translate of S by x, and aS = {ay : y ∈ S} denote
the scaling of S by a. The Euclidean norm (also known
as the `2 norm) of a vector x ∈ Rn is ‖x‖ = (

∑
i x

2
i)

1/2,
and the associated distance is dist(x,y) = ‖x−y‖. We
will use φx,y to refer to the angle between the vectors
x,y.

The distance function is extended to sets in the
usual way: dist(x, S) = dist(S,x) = miny∈S dist(x,y).
We often use matrix notation to denote sets of vectors.
For example, matrix S ∈ Rn×m represents the set of n-
dimensional vectors {s1, . . . , sm}, where s1, . . . , sm are
the columns of S. We denote by ‖S‖ the maximum
length of a vector in S. The linear space spanned by a
set of m vectors S is denoted span(S) = {

∑
i xisi : xi ∈

R for 1 ≤ i ≤ m}. For any set of n linearly independent
vectors S, we define the half-open parallelepiped P(S) =
{
∑
i xisi : 0 ≤ xi < 1 for 1 ≤ i ≤ n}. Finally, we denote

by Bn(x, r) the closed n-dimensional Euclidean ball of
radius r and center x, Bn(x, r) = {w ∈ Rn : ‖w− x‖ ≤
r}. If no center is specified, then the center is zero
Bn(r) = Bn(0, r).

Lattices: We now describe some basic definitions
related to lattices. For a more in-depth discussion, see
[18]. An n-dimensional lattice is the set of all integer
combinations

{ n∑
i=1

xibi : xi ∈ Z for 1 ≤ i ≤ n
}

of n linearly independent vectors b1, . . . ,bn in Rn.2

The set of vectors b1, . . . ,bn is called a basis for the
lattice. A basis can be represented by the matrix
B = [b1, . . . ,bn] ∈ Rn×n having the basis vectors as
columns. The lattice generated by B is denoted L(B).
Notice that L(B) = {Bx : x ∈ Zn}, where Bx is the
usual matrix-vector multiplication.

For any lattice basis B and point x, there exists
a unique vector y ∈ P(B) such that y − x ∈ L(B).
This vector is denoted y = x mod B, and it can be
computed in polynomial time given B and x. A sub-
lattice of L(B) is a lattice L(S) such that L(S) ⊆
L(B). The determinant of a lattice det(L(B)) is the (n-
dimensional) volume of the fundamental parallelepiped
P(B) and is given by |det(B)|.

The minimum distance of a lattice Λ, denoted
λ(Λ), is the minimum distance between any two distinct
lattice points, and equals the length of a nonzero

2Strictly speaking, this is the definition of a full-rank lattice.

Since only full-rank lattices are used in this paper, all definitions
are restricted to the full-rank case.

shortest lattice vector:

λ(Λ) = min{dist(x,y) : x 6= y ∈ Λ}
= min{‖x‖ : x ∈ Λ \ {0}} .

We often abuse notation and write λ(B) instead of
λ(L(B)).

Definition 2.1. (Shortest Vector Problem) An
input to SVP is a lattice basis B ∈ Zn×n, and the goal
is to find a vector x in L(B) such that ‖x‖ = λ(B).

For simplicity in this paper we consider only inputs
to SVP where all the entries in B have bitsize poly-
nomial in n, i.e., log(‖B‖) = poly(n). This allows to
express the complexity of SVP simply as a function of
a single parameter, the lattice dimension n. All the re-
sults in this paper can be easily adapted to the general
case by introducing an explicit bound log ‖B‖ ≤ M on
the size of the entries, and letting the time and space
complexity bound depend polynomially in M .

Theorem 2.1. (Kabatiansky and Levenshtein [12]).
Let A(n, φ0) be the maximal size of any set C of points
in Rn such that the angle between any two distinct vec-
tors in C is at least φ0. If 0 < φ0 < 63◦, then for all
sufficiently large n, A(n, φ0) ≤ 2cn for

c = −1
2

log(1− cos(φ0))− 0.099.

Notice that when φ0 = 60◦ this is equivalent to the
kissing constant:

τn = A(n, 60◦) ≤ 20.401n.

We remark that these upper bounds are probably not
tight, as there is no known matching lower bound.
For example, for the case of the kissing constant, the
best currently known lower bounds only proves that
τn > 20.2075+o(1) [5].

3 Algorithms

In this section we describe our two algorithms for the
shortest vector problem. For simplicity we assume that
these algorithms

• take as input, beside the input basis B, also a pa-
rameter µ ∈ [λ1(B), 1.01 · λ1(B)] which approx-
imates the length of the shortest nonzero lattice
vector within a constant factor 1.01, and

• are only required to produce a nonzero lattice
vector of length bounded by µ, possibly larger than
λ1.

1471 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/2

2/
24

 to
 1

83
.2

42
.2

54
.1

26
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

This is without loss of generality because any such
algorithm can be turned, using standard techniques,
into an algorithm that solves SVP exactly by trying
only polynomially many possible values for µ.

In Section 3.1, we describe List Sieve. In Section 3.2
we describe the Gauss Sieve, a practical variant of
the List Sieve with much better provable worst-case
space complexity bound Õ(τn), where τn is the kissing
constant in dimension n.

3.1 The List Sieve The List Sieve algorithm works
by iteratively building a list L of lattice points. At
every iteration, the algorithm attempts to add a new
point to the list. Lattice points already in the list are
never modified or removed. The goal of the algorithm
is to produce shorter and shorter lattice vectors, until
two lattice vectors within distance µ from each other
are found, and a lattice vector achieving the target
norm can be computed as the difference between these
two vectors. At every iteration, a new lattice point
is generated by first picking a (somehow random, in
a sense to be specified) lattice point v, and reducing
the length of v as much as possible by repeatedly
subtracting from it the lattice vectors already in the
list L when appropriate. Finally, once the length of v
cannot be further reduced, the vector v is included in
the list.

The main idea behind our algorithm design and
analysis is that reducing v with the vector list L ensures
that no two points in the list are close to each other.
3 We use this fact to bound from below the angle
between any two list points of similar norm and use
Theorem 2.1 to prove an upper bound on the size of
the list L. This immediately gives upper bounds on
the space complexity of the algorithm. Moreover, if at
every iteration we were to add a new lattice point to
the list, we could immediately bound the running time
of the algorithm as roughly quadratic in the list size,
because the size of L would also be an upper bound
on the number of iterations, and each iteration takes
time proportional4 to the list size |L|. The problem is
that some iterations might give collisions, lattice vectors
v that already belong to the list. These iterations
leave the list L unchanged, and as a result they just
waste time. So the main hurdle in the time complexity
analysis is bounding the probability of getting collisions.

This is done using the same method as in the
original sieve algorithm [4]: instead of directly working
with a lattice point v, we use a perturbed version

3This is because if v is close to a list vector u ∈ L, then u is

subtracted from v before v is considered for inclusion in the list.
4Each iteration involves a small (polynomial) number of scans

of the current list L.

of it p = v + e, where e is a small random error
vector of length ‖e‖ ≤ ξµ for an appropriate value of
ξ > 0.5. As before the length of p is reduced using list
points, but instead of adding p to the list we add the
corresponding lattice vector v = p − e. We will see
that some points p = v1 + e1 = v2 + e2 correspond to
two different lattice points v1, v2 at distance precisely
‖v1 − v2‖ = λ1(B) from each other. For example,
if s is the shortest nonzero vector in the lattice, then
setting p = −e1 = e2 = s/2 gives such a pair of points
v1 = 0,v2 = s. The distance between two points in L
is greater than µ or else the algorithm terminates and
as a result at most one of the possible lattice vectors
v1,v2 is in the list. This property can be used to get an
upper bound on the probability of getting a collision.

Unfortunately the introduction of perturbations
comes at a cost. As we have discussed above, sieving
produces points that are far from L and as a result we
can prove a lower bound on the angles between points
of similar norm. Indeed after sieving with L the point
p will be far from any point in L. However the point
that is actually added to the list is v = p−e which can
be closer to L than p by as much as ‖e‖ ≤ ξµ. That
makes the resulting bounds on the angles worse. This
worsening gets more and more significant as the norm of
the points gets smaller. Fortunately we can also bound
the distance between points in L by µ, which gives a
good lower bound on the angles between shorter points.
The space complexity of the algorithm is determined by
combining these two bounds to obtain a global bound
on the angle between any two points of similar norm,
for any possible norm.

The complete pseudo-code of the List Sieve is given
as Algorithm 1. Here we explain the main operations
performed by the algorithm.

Sampling. The pair (p, e) is chosen picking e uni-
formly at random within a ball of radius ξµ, and set-
ting p = e mod B. This ensures that, by construc-
tion, the ball B(p, ξµ) contains at least one lattice point
v = p − e. Moreover, the conditional distribution of v
(given p) is uniform over all lattice points in this ball.
Notice also that for any ξ > 0.5, the probability that
B(p, ξµ) contains more than one lattice point is strictly
positive: if s is a lattice vector of length λ1(B), then
the intersection of B(0, ξµ) and B(s, ξµ) is not empty,
and if e falls within this intersection, then both v and
v + s are within distance ξµ from p.

List reduction. The vector p is reduced by sub-
tracting (if appropriate) lattice vectors in L from it.
The vectors from L can be subtracted in any order.
Our analysis applies independently from the strategy
used to choose vectors from L. For each v ∈ L, we
subtract v from p only if ‖p − v‖ < ‖p‖. Notice that

1472 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/2

2/
24

 to
 1

83
.2

42
.2

54
.1

26
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Algorithm 1 ListSieve(B, µ) Output: v : v ∈ L(B) ∧ ‖v‖ ≤ µ OR: ⊥
function ListSieve(B, µ)

L← {0}, δ ← 1− 1/n, i← 0
ξ ← 0.685 . The choice of ξ is explained in the

analysis
K ← 2cn . c is going to be defined in the

analysis
while i < K do

i← i+ 1
(pi, ei)← Sample(B, ξµ)
pi ← ListReduce(pi, L, δ)
vi ← pi − ei
if (vi 6∈ L) then

if ∃vj ∈ L : ‖vi − vj‖ ≤ µ then
return vi − vj

end if
L← L ∪ {vi}

end if
end while
return ⊥

end function

function Sample(B, d)

e $← Bn(d)
p← e mod B
return (p, e)

end function

function ListReduce(p, L, δ)
while (∃vi ∈ L : ‖p− vi‖ ≤ δ‖p‖) do

p← p− vi
end while
return p

end function

reducing p with respect to v may make p no longer re-
duced with respect to some other v′ ∈ L. So, all list
vectors are repeatedly considered until the length of p
can no longer be reduced. Since the length of p de-
creases each time it gets modified, and p belongs to a
discrete set L(B)−e, this process necessarily terminates
after a finite number of operations. In order to ensure
fast termination, as in the LLL algorithm, we introduce
a slackness parameter δ < 1, and subtract v from p
only if this reduces the length of p by at least a factor
δ. As a result, the running time of each invocation of
the list reduction operation is bounded by the list size
|L| times the logarithm (to the base 1/δ) of the length
of p. For simplicity, we take δ(n) = 1 − 1/n, so that
the number of iterations is bounded by a polynomial
log(n‖B‖)/ log(1− 1/n)−1 = nO(1).

Termination. When the algorithm starts it com-
putes the maximum number K of samples it is going to
use. If a lattice vector achieving norm at most µ is not
found after reducing K samples, the algorithm outputs
⊥. In Section 4 we will show how to choose K so that
if λ1(B) ≤ µ ≤ 1.01λ1(B) the algorithm finds a vector
with norm bounded by µ with probability exponentially
close to 1.

Now we are ready to state our main theorem.

Theorem 3.1. Let ξ be a real number such that 0.5 <
ξ < 0.7 and c1(ξ) = log(ξ +

√
ξ2 + 1) + 0.401, c2(ξ) =

0.5 log(ξ2/(ξ2 − 0.25)). List Sieve solves SVP in the
worst case, with probability exponentially close to 1, in
space Õ(2c1n), and time Õ(2(2·c1+c2)n).

Proof. Immediately follows from Theorem 4.2 and The-
orem 4.1, proved in Section 4.

Setting the parameter ξ: A smaller ξ gives
smaller perturbations and reduces the space complexity.
On the other hand we need ξ > 0.5 to bound the
collision probability and consequently the running time.
By choosing ξ arbitrarily close to 0.5, we can achieve
space complexity 2cn for any c > log((1 +

√
5)/2) +

0.401 ≈ 1.095, and still keep exponential running time
2O(n), but with a large constant in the exponent. At
the cost of slightly increasing the space complexity, we
can substantially reduce the running time. The value of
ξ that yields the best running time is ξ ' 0.685 which
yields space complexity < 21.325n and time complexity
< 23.199n.

3.2 The Gauss Sieve As we have discussed in the
previous section the introduction of perturbations sub-
stantially increases the space requirements. In an at-
tempt to make sieving algorithms practical Nguyen and
Vidick in [21] have proposed a heuristic variant of AKS
that does not use perturbations. Their experiments
show that in practice collisions are not common and
the algorithm performs quite well. We also introduce a
practical variant of our algorithm without perturbations
which we call the Gauss Sieve.

The Gauss Sieve follows the same general approach
of building a list of shorter and shorter lattice vectors,
but when a new vector v is added to the list, not only
we reduce the length of v using the list vectors, but we

1473 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/2

2/
24

 to
 1

83
.2

42
.2

54
.1

26
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Algorithm 2 GaussSieve(B) Output: v : v ∈ L(B) ∧ ‖v‖ ≤ λ1(B)
function GaussSieve(B, µ)

L← {0}, S ← { },K ← 0
while K < c do

if S is not empty then
vnew ←S.pop()

else
vnew ←SampleKlein(B)

end if
vnew ←GaussReduce(vnew, L, S)
if (vnew = 0) then

K ← K + 1
else

L← L ∪ {vnew}
end if

end while
end function

function GaussReduce(p, L, S)
while (∃vi ∈ L : ‖vi‖ ≤ ‖p‖

∧ ‖p− vi‖ ≤ ‖p‖) do
p← p− vi

end while
while (∃vi ∈ L : ‖vi‖ > ‖p‖

∧ ‖vi − p‖ ≤ ‖vi‖) do
L← L \ {vi}
S.push(vi − p)

end while
return p

end function

also attempt to reduce the length of the vectors already
in the list using v. In other words, if min(‖v ± u‖) <
max(‖v‖, ‖u‖), then we replace the longer of v,u with
the shorter of v ± u. As a result, the list L always
consists of vectors that are pairwise reduced, i.e., they
satisfy the condition min(‖u ± v‖) ≥ max(‖u‖, ‖v‖).
This is precisely the defining condition of reduced
basis achieved by the Gauss/Lagrange basis reduction
algorithm for two dimensional lattices, hence the name
of our algorithm.

It is well known that if u,v is a Gauss reduced basis,
then the angle between u and v is at least π/3 (or 60
degrees). As a result, the maximum size of the list (and
space complexity of the algorithm) can be immediately
bounded by the kissing number τn. Unfortunately, we
are unable to prove any bounds on the probability of
collisions or the running time. Notice that collisions are
problematic because they reduce the list size, possibly
leading to nonterminating executions that keep adding
and removing vectors from the list. In practice (see
experimental results in Section 5) this does not occur,
and the running time of the algorithm seems to be
between quadratic and cubic in the list size, but we do
not know how to prove any worst-case upper bound.

As in [21], we do not use perturbations, and just
choose p = v at random using Klein’s randomized
rounding algorithm [15] (denoted SampleKlein in the
description of the algorithm). However since we cannot
prove anything about running time, the choice of sam-
pling algorithm is largely arbitrary. In the context of the
Gauss Sieve, not using perturbation has the main prac-
tical advantage of allowing to work with lattice points
only. This allows an integer only implementation of the
algorithm (except possibly for the sampling procedure

which may still internally use floating point numbers).
The Gauss Sieve pseudo-code is shown as Algo-

rithm 2. The algorithm uses a stack or queue data
structure S to temporarily remove vectors from the list
L. When a new point v is reduced with L, the algo-
rithm checks if any point in L can be reduced with v.
All such points are temporarily removed from L, and
inserted in S for further reduction. The Gauss Sieve
algorithm reduces the points in S with the current list
before inserting them in L. When the stack S is empty,
all list points are pairwise reduced, and the Gauss Sieve
can sample a new lattice point v for insertion in the
list L. Unfortunately, we cannot bound the number of
samples required to find a nonzero shortest vector with
high probability. As a result we have to use a heuristic
termination condition. Based on experiments a good
heuristic is to terminate after a certain number c(n) of
collisions has occurred (see section 5).

4 Analysis of List Sieve

In this section we prove time and space upper bounds for
the List Sieve algorithm, assuming it is given as a hint
a value µ such that λ1 ≤ µ ≤ 1.01 ·λ1. In subsection 4.1
we use the fact that the list points are far apart to get an
upper bound N on the list size. Then in subsection 4.2
we prove that collisions are not too common. We use
this fact to prove that after a certain number of samples
are processed, the algorithm finds a nonzero vector with
norm less than or equal to µ with high probability.

4.1 Space complexity

Theorem 4.1. The number of points in L is bounded

1474 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/2

2/
24

 to
 1

83
.2

42
.2

54
.1

26
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

from above by N = poly(n) · 2c1n where

c1 = log(ξ +
√
ξ2 + 1) + 0.401.

Proof. Let B be the input basis, and µ be the target
length of the List Sieve algorithm. Notice that as soon
as the algorithm finds two lattice vectors within distance
µ from each other, the algorithm terminates. So, the
distance between any two points in the list L must be
greater than µ. In order to bound the size of L, we
divide the list points into groups, according to their
length, and bound the size of each group separately.
Consider all list points belonging to a ball of radius µ/2

S0 = L ∩ B(µ/2).

Clearly S0 has size at most 1, because the distance
between any two points in B(µ/2) is bounded by µ.
Next, divide the rest of the space into a sequence of
spherical shells

Si = {v ∈ L : γi−1µ/2 < ‖v‖ ≤ γiµ/2}

for i = 1, 2, . . . and γ = 1 + 1/n. Notice that we only
need to consider a polynomial number of spherical shells
logγ(2n‖B‖/µ) = O(nc), because all list points have
length at most n‖B‖. We will prove an exponential
bound on the number of points in each spherical shell.
The same bound holds (up to polynomial factors) for
the total number of points in the list L.

So, fix a spherical shell Si = {v ∈ L : R < ‖v‖ ≤
γR} for some R = γi−1µ/2. Consider two arbitrary
points va,vb ∈ Si and let φva,vb

be the angle between
them. We will show that

(4.1) cos(φva,vb
) ≤ 1− 1

2(ξ +
√
ξ2 + 1)2

+ o(1).

The upper bound on cos(φ) is greater than 0.5. (Equiv-
alently the minimum angle is less than 60◦.) Therefore,
we can safely use Theorem 2.1 with the bound (4.1),
and conclude that the number of points in Si is at most
2c1n where

c1 = −1
2

log(1− cos(φ))− 0.099

≤ log
(√

2(ξ +
√
ξ2 + 1)

)
− 0.099

= log(ξ +
√
ξ2 + 1) + 0.401.

as stated in the theorem. It remains to prove (4.1).
We use the fact that

(4.2) cos(φva,vb
) =

va · vb
‖va‖‖vb‖

,

to transform any upper bound on va · vb into a cor-
responding upper bound on cos(φva,vb

). We give two

bounds on va · vb. First remember that ‖va − vb‖ > µ.
Squaring the terms yields va ·vb < (v2

a+v2
b−µ2)/2 and

we can use (4.2) to get

cos(φva,vb
) ≤ v2

a + v2
b − µ2

2‖va‖‖vb‖

≤ v2
a + v2

b

2‖va‖‖vb‖
− µ2

2‖va‖‖vb‖
.

Since R < ‖va‖, ‖va‖ ≤ γR = (1 + o(1))R, we get

(4.3) cos(φva,vb
) ≤ 1− µ2

2R2
+ o(1).

Notice that this bound is very poor when R is large. So,
for large R, we bound va · vb differently. Without loss
of generality, assume that vb was added after va. As
a result the perturbed point pb = vb + eb was reduced
with va, i.e., ‖pb − va‖ > δ‖pb‖. After squaring we get
pb · va < ((1− δ2)p2

b + v2
a)/2 and therefore

va · vb = va · pb − va · eb
< ((1− δ2)p2

b + v2
a)/2 + ‖va‖ξµ.

Using (4.2) gives

cos(φva,vb
) ≤ (1− δ2)p2

b + v2
a

2‖va‖‖vb‖
+
‖va‖ξµ
‖va‖‖vb‖

.

Since 1− δ2 = o(1), we get

(4.4) cos(φva,vb
) ≤ 1

2
+
ξµ

R
+ o(1).

Combining the two bounds on cos(φva,vb
) we get

(4.5) cos(φva,vb
) ≤ min

{
1− µ2

2R2
,

1
2

+
ξµ

R

}
+ o(1).

As R increases, the first bound gets worse and the
second better. So, the minimum (4.5) is maximized
when

1− µ2

2R2
=

1
2

+
ξµ

R
.

This is a quadratic equation in x = µ/R, with only one
positive solution

µ

R
=
√

1 + ξ2 − ξ =
1

ξ +
√

1 + ξ2
,

which, substituted in (4.5), gives the bound (4.1).

4.2 Time Complexity In this subsection we prove
bounds on the running time and success probability of
our algorithm. We recall that the List Sieve samples
random perturbations ei from Bn(ξµ), sets pi = ei mod
B and reduces pi with the list L. Then it considers the
lattice vector vi = pi − ei. At this point, one of the
following (mutually exclusive) events occurs:

1475 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/2

2/
24

 to
 1

83
.2

42
.2

54
.1

26
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

• Event C: vi is a collision (dist(L,vi) = 0, i.e.,
vi ∈ L)

• Event S: vi is a solution (0 < dist(L,vi) ≤ µ).

• Event L: vi is a new list point (dist(L,vi) > µ)

We will prove that if λ1(B) ≤ µ ≤ 1.01λ1(B), event S
will happen with high probability after a certain number
of samples.

We first give a lower bound to the volume of a
hypersphere cap (an alternative proof is given in [21]),
which will be used to bound the probability of getting
collisions.

Lemma 4.1. Let CapR,h be the n-dimensional spherical
cap with height h of a hypersphere Bn(R). Then for
Rb =

√
2hR− h2,

Vol(CapR,h)
Vol(Bn(R))

>

(
Rb
R

)n
· h

2Rbn
.

Proof. The basis of CapR,h is an n − 1 dimensional
hypersphere of radius Rb =

√
2hR− h2. Therefore

CapR,h includes a cone C1 with basis Bn−1(Rb) and
height h. Also notice that a cylinder C2 with basis
Bn−1(Rb) and height 2 ·Rb includes Bn(Rb). Using the
facts above we have:

Vol(CapR,h) > Vol(C1) = Vol(Bn−1(Rb))
h

n
=

Vol(C2)
h

2Rbn
> Vol(Bn(Rb))

h

2Rbn
.

Therefore

Vol(CapR,h)
Vol(Bn(R))

>
Vol(Bn(Rb))
Vol(Bn(R))

· h

2Rbn
=
(
Rb
R

)n
· h

2Rbn
.

In the following theorem we assume ξ < 0.7 as this
yields a slightly simpler proof, and the values of ξ that
optimize the space and time complexity of our algorithm
satisfy this constraint anyway. The theorem remains
valid for larger values of ξ.

Theorem 4.2. If λ1(B) ≤ µ ≤ 1.01λ1(B) and 0.5 <
ξ < 0.7 then List Sieve outputs a lattice point with norm
≤ µ with probability exponentially close to 1 as long as
the number of samples used is at least K = Õ(2(c1+c2)n),
where

c1 = log(ξ+
√
ξ2 + 1)+0.401, c2 = log

(
ξ√

ξ2 − 0.25

)
.

Proof. Let s be a shortest nonzero vector in L(B).
Consider the intersection of two n-dimensional balls of
radius ξµ and centers 0 and −s: I0 = Bn(0, ξµ) ∩
Bn(−s, ξµ) and also I1 = Bn(0, ξµ)∩Bn(s, ξµ) = I0 +s.
Notice that ξµ ≤ 0.707λ1(B) < ‖s‖ and as a result I0
and I1 do not intersect.

Consider an error vector ei in I0 ∪ I1, and the cor-
responding perturbed point p = v + ei generated by
the list reduction procedure. The conditional distribu-
tion of v given p, is uniform over the lattice points in
p− I0 ∪ I1. We know that this set contains at least one
lattice point v = p − ei. Moreover, if v ∈ p − Ib, then
v− (−1)bs ∈ p−I1−b. Finally, notice that the diameter
of each p− Ib is bounded by

2
√

(ξµ)2 − λ2
1/4 ≤ 2

√
0.7072 − 0.25λ1 < λ1.

It follows that v and v′ = v − (−1)bs are the only two
lattice vectors in p − I0 ∪ I1, and at most one of them
belongs of L because ‖v − v′‖ = λ1 ≤ µ. This proves
that, conditioned on ei ∈ I0 ∪ I1, the probability that
v ∈ L is at most 1/2:

Pr[C|ei ∈ I0 ∪ I1] ≤ 1/2.

Now notice that I ∪ I ′ contains four disjoint caps
with height h = ξµ − ‖s‖/2 ≥ ξµ − µ/2 on an n-
dimensional ball of radius ξµ. We use Lemma 4.1 to
bound from below the probability that ei ∈ I0 ∪ I1:

Pr[ei ∈ I0 ∪ I1] =
4Vol(Capξµ,ξµ−0.5µ)

Vol(Bn(ξµ))

>

(√
ξ2 − 0.25
ξ

)n
· ξ − 0.5

n
√
ξ2 − 0.25

= 2−c2n · ξ − 0.5

n
√
ξ2 − 0.25

.

Therefore the probability of not getting a collision is
bounded from below by

Pr[C’] ≥ Pr[C’|ei ∈ I ∪ I ′]Pr[ei ∈ I ∪ I ′]

≥ 2−c2n · ξ − 0.5

2n
√
ξ2 − 0.25

= p.

Now given that the probability of event C’ is at least p,
the number of occurrences of C’ when K samples are
processed is bounded from below by a random variable
X following binomial distribution Binomial(K, p). Let
F (N ;K, p) = Pr[X ≤ N] the probability of getting no
more than N occurrences of C’ after K samples. If we
set K = 2Np−1 = Õ(2(c1+c2)n) we can use Chernoff’s

1476 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/2

2/
24

 to
 1

83
.2

42
.2

54
.1

26
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

inequality:

F (N ;K, p) ≤ exp
(
− 1

2p
(Kp−N)2

K

)
= exp

(
−N

4

)
≤ 1

2O(n)
.

As a result if List Sieve uses K samples, then, with
exponentially high probability, at least N + 1 of them
will not satisfy event C. These events can either be L
or S events. However the list size cannot grow beyond
N , and as a result the number of L events can be at
most N . So event S will happen at least once with high
probability.

Theorem 4.2 is used to set the variable K in the List
Sieve algorithm, in order to ensure success probability
exponentially close to 1. A bound on the running time
of the algorithm immediately follows.

Corollary 4.1. The total running time of the algo-
rithm is 2(2·c1+c2)n where c1, c2 are as in theorem 4.2.

Proof. Let us consider the running time of List Reduce.
After every pass of the list L the input vector pi to
List Reduce gets shorter by a factor δ. Therefore the
total running time is logδ(‖B‖n) = poly(n) passes of
the list and each pass costs O(N) vector operations,
each computable in polynomial time. Now notice that
our algorithm will run List Reduce for K samples. This
gives us total running time of Õ(K ·N) = Õ(2(2c1+c2)n).

5 Practical performance of Gauss Sieve

In this section we describe some early experimental
results on Gauss Sieve. We will describe the design of
our experiments and then we will discuss the results on
the space and time requirements of our algorithm.

Experiment setting: For our experiments we
have generated square n×n bases corresponding to ran-
dom knapsack problems modulo a prime of ' 10 ·n bits.
These bases are considered “hard” instances and are fre-
quently used in the experimental evaluation of lattice
algorithms [21, 8]. In our experiments we used Gauss
Sieve, the NV Sieve implementation from [21] and the
NTL library for standard enumeration techniques [29].
For every n = 35, . . . , 63 we generated 6 random lat-
tices, reduced them using BKZ with window 20, and
measured the average space and time requirements of
the algorithms. For sieving algorithms the logarithms of
these measures grow almost linearly with the dimension
n. We use a simple model of 2cn to fit our results and we
use least squares estimation to compute c. We run our
experiments on a Q6600 Pentium, using only one core,

and the algorithms were compiled with exactly the same
parameters. The experiments are certainly not exhaus-
tive, however we believe that they are enough to give a
sense of the practical performance of our algorithm, at
least in comparison to previous sieving techniques.

Termination of Gauss Sieve: As we have al-
ready discussed we cannot bound the number of samples
required by Gauss Sieve to find a nonzero shortest vec-
tor with high probability. A natural termination condi-
tion is to stop after a certain number c of collisions. In
order to get an estimate for a good value of c, we mea-
sured the number of collisions before a nonzero shortest
vector is found. Although the number of collisions vary
from lattice to lattice we have found that setting c to
be let’s say a ' 10% of the list size, is a conservative
choice. The results that follow are based on this termi-
nation condition. Gauss Sieve found the nonzero short-
est vector for 173 out of the 174 of the lattices we tested.
Interestingly enough the failure was for dimension 38,
and can be probably attributed to the very short list
size used by the Gauss Sieve in small dimension.

Size complexity: To evaluate the size complexity
of the Gauss Sieve we measure the maximum list
size. (We recall that in the Gauss Sieve the list
can both grow and shrink, as list points collide with
each other. So, we consider the maximum list size
during each run, and then average over the input
lattice.) Our experiments show that the list size grows
approximately as 20.2n. This is consistent with our
theoretical worst-case analysis, which bounds the list
size by the kissing constant τn. Recall that τn can
be reasonably conjectured to be near 20.21n. The
actual measured exponent 0.2 may depend on the input
lattice distribution, and it would be interesting to run
experiments on other distributions. However, in all
cases, we expect the space complexity to be below 20.21n.
Gauss Sieve improves NV Sieve results in two ways:

• Theory: Our τn bound is proven under no heuristic
assumptions, and gives an interesting connection
between sieving techniques and spherical coding.

• Practice: In practice Gauss Sieve uses far fewer
points (e.g., in dimension n ' 40, the list size is
smaller approximately by a factor ' 70). See figure
1.

Running time: Fitting the running time with our
simple model 2cn gives c = 0.52, which is similar to the
experiments of NV Sieve. However once more Gauss
Sieve is better in practice. For example, in dimension
' 40, the 70-fold improvement on the list size, gives a
250× running time improvement. In Figure 2 we also
give the running time of the Schnorr-Euchner (SE) enu-

1477 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/2

2/
24

 to
 1

83
.2

42
.2

54
.1

26
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

 100

 1000

 10000

 100000

 1e+06

 35 40 45 50 55 60

#S
am

pl
es

 (
Lo

g-
sc

al
e)

Dimension

Space requirements comparisson

NV Sieve
Gauss Sieve

Figure 1: Space requirements of Sieving algorithms

meration algorithm as implemented in NTL.5 This pre-
liminary comparison with SE is meant primarily to put
the comparison between sieve algorithms in perspective.
In [21], Nguyen and Vidick had compared their variant
of the sieve algorithm with the same implementation
of SE used here, and on the same class of random lat-
tices. Their conclusion was that while sieve algorithms
have better asymptotics, the SE algorithm still reigned
in practice, as the cross-over point is way beyond di-
mension n ' 50, and their algorithm was too expensive
to be run in such high dimension. Including our sieve
algorithm in the comparison, changes the picture quite
a bit: the crossover point between the Gauss Sieve and
the Schnorr-Euchner reference implementation used in
[21] occurs already in dimension n ' 40.

This improved performance shows that sieve algo-
rithms have the potential to be used in practice as an
alternative to standard enumeration techniques. Al-
though currently sieving algorithms cannot compare
with more advanced enumeration heuristics (e.g., prun-
ing), we hope that it is possible to develop similar
heuristics for sieve algorithms. The development of such
heuristics, and a thorough study of how heuristics affect
the comparison between enumeration and sieving, both
in terms of running time and quality of the solution, is
left to future research.

6 Comparison with AKS

In this section we give a detailed comparison between
our new algorithms and previous work, highlighting the

5The running time of enumeration algorithms, is greatly
affected by the quality of the initial basis. To make a fair

comparison we have reduced the basis using BKZ with window
20.

 0.1

 1

 10

 100

 1000

 10000

 100000

 35 40 45 50 55 60

T
im

e
in

 s
ec

on
ds

 (
Lo

g-
sc

al
e)

Dimension

Running time comparisson

NV Sieve
Gauss Sieve

NTL Schnorr-Euchner with BKZ-20

Figure 2: Running Times

source of improvements both in the theoretical analysis
and practical performance. We show how to improve the
analysis of AKS using the packing bounds of Theorem
2.1 and a number of other observations. Our analysis
shows that the time and space bounds of AKS can
be improved to 23.4n and 21.97n. However even after
the improved analysis, AKS is outperformed by the
conceptually simpler List Sieve. Intuitively there are
two reasons for this:

1. AKS algorithm has to generate all the points from
the beginning. As a result the points that will
cause collisions (which in a worst case analysis
are exponentially more) increase the space bounds.
List Sieve on the other hand discards collisions as
early as possible.

2. AKS sieving cannot provably continue to produce
shorter vectors after a certain norm. As a result it
generates enough “short” vectors so that the dif-
ference of two of them will give a nonzero shortest
vector. The point arrangements we get out of this
procedure are slightly worse than the sieving of List
Sieve.

In the following, we assume the reader has some fa-
miliarity with [21] and only highlight the elements of
the algorithm that are directly relevant to the compar-
ison to our work. Apart from the parameters ξ, µ used
in List Sieve, AKS requires a parameter γ the shrinking
factor. The core procedure of AKS takes as input a set
of perturbed points Pi (the norm of the perturbations is
bounded by ξµ) with maximum norm Ri. It generates a
maximal subset Li of Pi with the property that the dis-
tance between any two points in Li is greater than γRi.
Then it uses Li to reduce the norms of the remaining

1478 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/2

2/
24

 to
 1

83
.2

42
.2

54
.1

26
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

points in Pi \ Li to at most γRi + ξµ. The algorithm
starts with a large pool of points P0 with maximum
norm R0. Applying the core procedure described above
it generates a sequence of sets P0, P1, P2, . . . with shorter
and shorter maximum norms R0, R1, R2, Notice
that the maximum norm of the sets Pi can be easily
reduced near Rk ' ξµ/(1 − γ) but not further. The
algorithm runs a polynomial number k of steps and ac-
quires a set Pk of perturbed points with maximum norm
Rk ' ξµ/(1 − γ). After the removal of the perturba-
tions these points correspond to a set of lattice vectors
Vk with maximum norm R∞ ' ξµ(1 + 1/(1−γ)). Then
AKS computes the pairwise differences of all the points
in Vk to find a nonzero shortest vector.

We bypass most of the details (the reader is referred
to [21] for the complete analysis), to show directly how
to improve the space and time bounds of AKS. Let
the total number of generated points |P0| = 2c0n, the
probability of a point not being a collision p = 2−cun,
the maximum number of points used for sieving |Li| ≤
2csn, and the number of points required in Vk to find a
vector with the required norm is 2cRn. After k steps of
the algorithm the points in Pk will be 2c0n − k2csn and
the points in Vk at most (2c0n − k2csn)/2cun because of
collisions. Notice that we need enough points in P0 to
generate the lists Li, c0 > cs and acquire enough points
in Vk, c0 − cu > cR. Therefore the space complexity
is 2c0n with c0 = max{cs, cR + cu}. Every sieving step
reduces 2c0n points with the 2csn points of Li, as a result
the sieving procedure needs 2(c0+cs)n time. Finally we
need to acquire the pairwise differences of at least 2cRn

points in Vk, but for each point we might need to use
2cun points from Pk. As a result the total running
time for the last step is 22cRn+cun. Totally the time
complexity is 2cTn with cT = max{c0 + cs, 2cR + cu}.

Now we are ready to introduce the linear program-
ming bounds. Let A a set of points inside an n-
dimensional ball of radius R and pairwise distance ≥ r.
Using similar techniques with our main theorems we
can show that the angle between any two points with
similar norm is cosφ < 1 − r2/(2R2) and using theo-
rem 2.1 we get that the total number of points in A
are bounded by 2cn with c = 0.401 + log(R/r). Now
we can give bounds to all the constants defined above.

First cu = log
(

ξ√
ξ2−0.25

)
which is identical to c2 in

our analysis. Notice that the points in any set Li are
in a ball of radius Ri and have pairwise distance γRi
therefore cs = 0.401 + log(1/γ). On the other hand the
set Vk has minimum distance > µ while the maximum
radius of the points is R∞ ' ξµ(1 + 1/(1 − γ)) there-
fore we need cR = 0.401 + log(ξ(1 + 1/(1 − γ))). To
minimize the space constant c0 = max{cs, cR + cu} we

set ξ = 0.71, γ = 0.382 which gives space requirements
21.79n and time 23.58n. On the other hand if we want to
minimize the time complexity good values are ξ = 0.69
and γ = 0.49 which give space 21.97n and time 23.4n.

7 Extensions and open problems

An interesting feature common to all sieve algorithms is
that they can be slightly optimized to take advantage of
the structure of certain lattices used in practical cryp-
tographic constructions, like the NTRU lattices [11], or
the cyclic lattices of [17]. The idea is the following.
The structured lattices used in this constructions have
a non-trivial automorphism group, i.e., they are invari-
ant under certain (linear) transformations. For exam-
ple, cyclic lattices have the property that whenever a
vector v is in the lattice, then all n cyclic rotations of v
are in the lattice. When reducing a new point p against
a list vector v, we can use all rotations of v to decrease
the length of p. Effectively, this allows us to consider
each list point as the implicit representation of n list
points. This approximately translates to a reduction of
the list size by a factor n. While this reduction may not
be much from a theoretical point of view because the
list size is exponential, it may have a noticeable impact
on the practical performance of the algorithm.

There are a number of open problems concerning
algorithms for the shortest vector problem. It is still
unclear if we can get a 2O(n) algorithm that uses only
polynomial space, or even how to get a deterministic
algorithm with 2O(n) time and space complexity. Con-
cerning sieve based algorithms we identify two possible
lines of research. Firstly, improving the current algo-
rithms. Bounding the running time of Gauss Sieve, or
getting a faster heuristic would be very interesting. An-
other interesting question is whether the bound of Ka-
batiansky and Levenshtein [12] can be improved when
the lattice is known to be cyclic, or has other interesting
structure. The second line of research is to use sieving
as a subroutine for other algorithms that currently use
enumeration techniques. Our early experimental results
hint that sieving could solve SVPs in higher dimensions
than we previously thought possible. It is especially in-
teresting for example, to examine if such a tool can give
better cryptanalysis algorithms.

Acknowledgments

We thank Phong Nguyen and Thomas Vidick for pro-
viding the implementation of the sieve algorithm of [21]
which we used for the experimental comparison.

References

[1] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger. Closest

1479 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/2

2/
24

 to
 1

83
.2

42
.2

54
.1

26
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

point search in lattices. IEEE Transactions on Infor-
mation Theory, 48(8):2201–2214, Aug. 2002.

[2] M. Ajtai. Generating hard instances of lattice
problems. Complexity of Computations and Proofs,
Quaderni di Matematica, 13:1–32, 2004. Preliminary
version in STOC 1996.

[3] M. Ajtai and C. Dwork. A public-key cryptosystem
with worst-case/average-case equivalence. In Proceed-
ings of STOC ’97, pages 284–293. ACM, May 1997.

[4] M. Ajtai, R. Kumar, and D. Sivakumar. A sieve
algorithm for the shortest lattice vector problem. In
Proceedings of STOC ’01, pages 266–275. ACM, July
2001.

[5] J. Conway and N. Sloane. Sphere Packings, Lattices
and Groups. Springer, 1999.

[6] C. Dwork. Positive applications of lattices to cryptog-
raphy. In I. Pŕıvara and P. Ruzicka, editors, Math-
ematical Foundations of Computer Science 1997, vol-
ume 1295 of LNCS, pages 44–51. Springer, Aug. 1997.

[7] N. Gama and P. Q. Nguyen. Finding short lattice
vectors within mordell’s inequality. In Proceedings of
STOC ’08, pages 207–216. ACM, May 2008.

[8] N. Gama and P. Q. Nguyen. Predicting lattice reduc-
tion. In Proceedings of EUROCRYPT ’08, volume 4965
of LNCS, pages 31–51. Springer, 2008.

[9] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trap-
doors for hard lattices and new cryptographic construc-
tions. In Proceedings of STOC ’08, pages 197–206.
ACM, May 2008.

[10] G. Hanrot and D. Stehlé. Improved Analysis of
Kannan’s Shortest Lattice Vector Algorithm. In
Proceedings of Crypto ’07.

[11] J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU:
a ring based public key cryptosystem. In Proceedings
of ANTS-III, volume 1423 of LNCS, pages 267–288.
Springer, June 1998.

[12] G. Kabatiansky and V. Levenshtein. Bounds for
packings on a sphere and in space. Problemy Peredachi
Informatsii, 14(1):3–25, 1978.

[13] R. Kannan. Improved algorithms for integer program-
ming and related lattice problems. In Proceedings of
the fifteenth annual ACM symposium on theory of com-
puting - STOC ’83, pages 193–206. ACM, Apr. 1983.

[14] R. Kannan. Annual Review of Computer Science, vol-
ume 2, chapter Algorithmic Geometry of numbers,
pages 231–267. Annual Review Inc., Palo Alto, Cal-
ifornia, 1987.

[15] P. Klein. Finding the closest lattice vector when it’s
unusually close. In Proceedings of the 11th symposium
on discrete algorithms, San Francisco, California, Jan.
2000. SIAM.

[16] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Fac-
toring polynomials with rational coefficients. Mathe-
matische Annalen, 261:513–534, 1982.

[17] D. Micciancio. Generalized compact knapsacks, cyclic
lattices, and efficient one-way functions. Computa-
tional Complexity, 16(4):365–411, Dec. 2007. Prelimi-
nary version in FOCS 2002.

[18] D. Micciancio and S. Goldwasser. Complexity of
Lattice Problems: a cryptographic perspective, volume
671 of The Kluwer International Series in Engineering
and Computer Science. Kluwer Academic Publishers,
Boston, Massachusetts, Mar. 2002.

[19] D. Micciancio and O. Regev. Worst-case to average-
case reductions based on Gaussian measure. SIAM
Journal on Computing, 37(1):267–302, 2007. Prelim-
inary version in FOCS 2004.

[20] P. Nguyen and J. Stern. The two faces of lattices in
cryptology. In Proceedings of CaLC ’01, volume 2146
of LNCS, pages 146–180. Springer, Mar. 2001.

[21] P. Nguyen and T. Vidick. Sieve algorithms for the
shortest vector problem are practical. J. of Mathemat-
ical Cryptology, 2(2):181–207, Jul 2008.

[22] C. Peikert and B. Waters. Lossy trapdoor functions
and their applications. In Proceedings of STOC ’08,
pages 187–196. ACM, May 2008.

[23] M. Pohst. On the computation of lattice vectors of
minimal length, successive minima and reduced bases
with applications. ACM SIGSAM Bulletin, 15(1):37–
44, 1981.

[24] X. Pujol and D. Stehlé. Rigorous and efficient short
lattice vectors enumeration, 2008. In Proceedings of
Asiacrypt ’08, pages 390–405. Springer, 2008.

[25] O. Regev. New lattice based cryptographic construc-
tions. Journal of the ACM, 51(6):899–942, 2004. Pre-
liminary version in STOC 2003.

[26] O. Regev. On lattices, learning with errors, random
linear codes, and cryptography. In Proceedings of
STOC ’05, pages 84–93. ACM, June 2005.

[27] O. Regev. Lecture notes on lattices in computer
science, 2004. Available at http://www.cs.tau.ac.il/
˜odedr/teaching/lattices fall 2004/index. html.

[28] C.-P. Schnorr. A hierarchy of polynomial time lattice
basis reduction algorithms. Theoretical Computer Sci-
ence, 53(2–3):201–224, 1987.

[29] C.-P. Schnorr and M. Euchner. Lattice basis reduction:
Improved practical algorithms and solving subset sum
problems. Mathematical programming, 66(1-3):181–
199, Aug. 1994. Preliminary version in FCT 1991.

[30] V. Shoup. NTL: A library for doing number theory,
2003.

1480 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/2

2/
24

 to
 1

83
.2

42
.2

54
.1

26
 .

R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

